Complex Analysis

Math 312 Spring 1998

Class \#4 (Wednesday 01/21/98)

SUMMARY Polynomial Equations of a Complex Variable and Roots of Complex Numbers CURRENT READING Churchill \& Brown, pages 19-23
NEXT READING Churchill \& Brown, pages 23-32
Update
The answers to the exercises from the class \#3 are:
1: $e^{i \pi}=\cos \pi+i \sin \pi=-1$
2: $1+i=|1+i| e^{i \arg (1+i)}=\sqrt{2} e^{\frac{i \pi}{4}+2 n i \pi}$
3: $(1-i)^{5}=\left(|1-i| e^{i \operatorname{Arg}(1-i)}\right)^{5}=\left(\sqrt{2} e^{i \frac{-\pi}{4}}\right)^{5} 2^{5 / 2} e^{\frac{-i 5 \pi}{4}}=\sqrt{32} e^{\frac{3 \pi i}{4}}=\sqrt{32} \frac{(i-1)}{\sqrt{2}}=-4+4 i$
We now know how to deal with real integer powers of complex numbers in a nice way (by using DeMoivre's Formula and exponential form).

Fractional Exponents

What about real fractional powers of complex numbers, i.e. roots? That is, we want to solve an equation like

$$
\begin{equation*}
z^{n}-z_{0}=0 \tag{1}
\end{equation*}
$$

where z_{0} is a known complex number, and we are trying to find the corresponding value(s) of $z=z_{0}^{1 / n}$ which solve this equation.
Suppose we write z_{0}, z and z^{n} in polar form:

$$
\begin{align*}
z_{0} & = \tag{2}\\
z & = \tag{3}\\
z^{n} & = \tag{4}
\end{align*}
$$

where $\left|z_{0}\right|=r_{0},|z|=r, \operatorname{Arg} z_{0}=\theta_{0}$ and $\operatorname{Arg} z=\theta$
We can rewrite (1) as $z^{n}=z_{0}$ and obtain two real equations.

Exercise

Obtain expressions for r and θ in terms of r_{0} and θ_{0}

We are interested in finding the $n^{\text {th }}$ roots of unty, i.e. z such that

$$
z^{n}=1, \quad n=1,2,3 \ldots
$$

On the following axes, draw vector representations of the $n^{\text {th }}$ roots of unity when $n=2$, $n=3$ or $n=4$. How many distinct solutions to $z^{n}=1$ are there? In other words, we are trying to evaluate $\sqrt{1}, \sqrt[3]{1}, \sqrt[4]{1}, \ldots$

What do you think the $5^{\text {th }}$ roots of unity will look like?

Exercise

Compute the solutions to the equation $z^{5}=i$ and write them in polar (and rectangular) form. Sketch these solutions on the grid on the right.

Using DeMoivre's Formula and the result on $n^{\text {th }}$ roots we can obtain a general formula for evaluating $z^{m / n}$
$z^{m / n}=c_{k}=|z|^{m / n} \exp \left(\frac{i(\theta+2 \pi k)}{n}\right), \quad k=0,1, \ldots, n-1, \quad$ where $\theta=\operatorname{Arg} z$
These n roots can be written as

$$
c, c \omega_{n}, c \omega_{n}^{2}, c \omega_{n}^{3}, \cdots, c \omega_{n}^{n-1}
$$

where c is $a n y n^{t h}$ root of a non-zero complex number, and $\omega_{n}=\exp \left(\frac{2 i \pi}{n}\right)$

Examples

(1) Prove that $\sin 2 \theta=2 \sin \theta \cos \theta$ and $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$ (use DeMoivre's Formula)
(2) Evaluate $\sqrt{5-12 i}$
(3) Solve $w^{3}-i=-\sqrt{3}$
(4) Solve $w^{4 / 3}+2 i=0$

