Complex Analysis

Math 312 Spring 1998 Buckmire

MWF 10:30am - 11:25am Fowler 112

Class #4 (Wednesday 01/21/98)

SUMMARY Polynomial Equations of a Complex Variable and Roots of Complex Numbers **CURRENT READING** Churchill & Brown, pages 19-23

NEXT READING Churchill & Brown, pages 23-32

Update

The answers to the exercises from the class #3 are:

1:
$$e^{i\pi} = \cos \pi + i \sin \pi = -1$$

1:
$$e^{i\pi} = \cos \pi + i \sin \pi = -1$$

2: $1+i = |1+i|e^{i} \arg{(1+i)} = \sqrt{2}e^{\frac{i\pi}{4} + 2ni\pi}$

3:
$$(1-i)^5 = \left(|1-i|e^{i\operatorname{Arg}(1-i)}\right)^5 = \left(\sqrt{2}e^{i\frac{-\pi}{4}}\right)^5 2^{5/2}e^{\frac{-i5\pi}{4}} = \sqrt{32}e^{\frac{3\pi i}{4}} = \sqrt{32}\frac{(i-1)}{\sqrt{2}} = -4 + 4i$$

We now know how to deal with real integer powers of complex numbers in a nice way (by using DeMoivre's Formula and exponential form).

Fractional Exponents

What about real fractional powers of complex numbers, i.e. roots? That is, we want to solve an equation like

$$z^n - z_0 = \mathbf{0} \tag{1}$$

where z_0 is a known complex number, and we are trying to find the corresponding value(s) of $z = z_0^{1/n}$ which solve this equation.

Suppose we write z_0 , z and z^n in polar form:

$$z_0 = \tag{2}$$

$$z =$$
 (3)

$$z^n =$$
 (4)

where $|z_0| = r_0$, |z| = r, Arg $z_0 = \theta_0$ and Arg $z = \theta$

We can rewrite (1) as $z^n = z_0$ and obtain two real equations.

Exercise

Obtain expressions for r and θ in terms of r_0 and θ_0

Roots of Unity

We are interested in finding the n^{th} roots of unty, i.e. z such that

$$z^n = 1,$$
 $n = 1, 2, 3...$

On the following axes, draw vector representations of the n^{th} roots of unity when n=2, n=3 or n=4. How many distinct solutions to $z^n=1$ are there? In other words, we are trying to evaluate $\sqrt{1}$, $\sqrt[3]{1}$, $\sqrt[4]{1}$, ...

What do you think the 5^{th} roots of unity will look like?

Exercise

Compute the solutions to the equation $z^5 = i$ and write them in polar (and rectangular) form. Sketch these solutions on the grid on the right.

Using DeMoivre's Formula and the result on n^{th} roots we can obtain a general formula for evaluating $z^{m/n}$

$$z^{m/n} = c_k = |z|^{m/n} exp \; \bigg(\frac{i(\theta + 2\pi k)}{n}\bigg), \qquad k = 0, 1, \ldots, n-1, \quad \text{where} \; \theta = \; \text{Arg} \; z$$

These n roots can be written as

$$c, c\omega_n, c\omega_n^2, c\omega_n^3, \cdots, c\omega_n^{n-1}$$

where c is any n^{th} root of a non-zero complex number, and $\omega_n = \exp\left(\frac{2i\pi}{n}\right)$

Examples

(1) Prove that $\sin 2\theta = 2 \sin \theta \cos \theta$ and $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ (use DeMoivre's Formula)

(2) Evaluate $\sqrt{5-12i}$

(3) Solve
$$w^3 - i = -\sqrt{3}$$

(4) Solve
$$w^{4/3} + 2i = 0$$