Complex Analysis

Math 312 Spring 1998 Buckmire MWF 10:30am - 11:25am Fowler 112

Worksheet #3 (Friday 01/16/98)

SUMMARY Polar and Exponential forms of Complex Numbers

READING Churchill & Brown, pages 12-18

We have been considering the complex plane as an analogue to the 2-D cartesian x-y plane. You may recall that there are other coordinate systems that can be imposed on the 2-D plane. One of those coordinate systems is known as **polar coordinates**.

<u>Exercise</u>

Write $(1,\sqrt{3})$ in polar coordinates.

What is the angle between a line drawn from (0, 0) to $(1, \sqrt{3})$ and the *x*-axis?

The complex number which is found at $(1, \sqrt{3})$ is _____. It can also be written as $z = r(\cos \theta + i \sin \theta) = |z| \operatorname{cis} \theta$

This is known as the **polar form** of the complex number.

This angle θ corresponding to the complex number z is called the **principal argument** of z, denoted by Arg z. By tradition, $-\pi < \text{Arg } z \leq \pi$ and Arg 0 is undefined.

The set of all values θ of such that $\tan \theta = \frac{\operatorname{Im} z}{\operatorname{Re} z}$ is known as the **argument** of *z*, or $\arg z$

$$\arg z = \operatorname{Arg} z + 2n\pi$$
 (*n* = 0, ±1, ±2,...) (1)

Exercise

Therefore, arg $(1 + \sqrt{3}i)$ is _____

Write $z_1 = -1 - i$ and $z_2 = 1 - i$ in **polar form** and sketch them on the graph below.

Do you see any interesting geometrical relationship between z_1 and z_2 ?

Do you notice any interesting algebraic relationship between z_1 and z_2 ?

Write down a general relationship between $arg(z_1z_2)$ and $arg(z_1)$ and $arg(z_2)$

Exponential Forms

Euler's Formula

You may have noticed that the expression $\cos \theta + i \sin \theta$ is so common that the shorthand $\cos \theta$ has been developed. Another, even more compact symbol can be derived using Euler's formula:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Note $\theta = \arg z$ and is a real number in these formulas. So, now we can write complex numbers in **exponential form**

$$z = |z|e^{i\theta} = re^{i\theta}$$

Exercise

1. Compute the value of $e^{\pi i}$

2. Write 1 + i in exponential form

3. Write $(1 - i)^5$ in rectangular form (i.e. the usual x + iy)

De Moivre's Formula

 $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$

We will prove this is true by first writing down z^n in polar form and exponential form and equating them.