Complex Analysis

Math 312 Spring 1998

Buckmire

Worksheet \#2 (Wednesday 01/14/98)
SUMMARY Graphical Representations of Complex Numbers and Inequalities
READING Churchill \& Brown, pages 6-11
Consider 2 complex numbers $z_{1}=3+0.5 i$ and $z_{2}=1+2 i$
Draw an Argand diagram depicting these two complex numbers in the complex plane. What physical quantity do $\left|z_{1}\right|$ and $\left|z_{2}\right|$ represent in the diagram?

Then draw in vectors that represent the complex numbers $z_{1}+z_{2}$ and $z_{1}-z_{2}$ Indicate what the value of $\left|z_{1}+z_{2}\right|$ is. If I had two points at $(3,0.5)$ and $(1,2)$ what would the distance between these two points be?

Exercise

Consider the equation $|z-2+i|=2$.
What curve does this equation represent in the complex plane?

Consider the equation $2=\operatorname{Re}(\bar{z}-i)$
What curve does this equation represent in the complex plane?

Sketch the set of points which solve these equations on the grid provided.

There are a number of interesting inequalities that one can prove using complex variables which have significance in other arenas. The most famous of these is the Triangle Inequality

Triangle Inequality

$$
\begin{equation*}
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \tag{1}
\end{equation*}
$$

Can you express a geometric or vector interpretation of the Triangle Inequality?

This expression (1) is also true in a more general form known as the Cauchy-Schwarz Inequality

Cauchy-Schwarz Inequality

$$
\begin{align*}
\left|z_{1}+z_{2}+z_{3}+\ldots+z_{n}\right| & \leq\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|+\ldots+\left|z_{n}\right| \tag{2}\\
\left|\sum_{k=1}^{n} z_{k}\right| & \leq \sum_{k=1}^{n}\left|z_{k}\right| \tag{3}
\end{align*}
$$

The Cauchy-Schwarz Inequality can be proved by mathematical induction.

Some Other Inequalities

For the inequalities below, try to come up with a geometric interpretation and prove that they are true.

$$
\begin{gathered}
\operatorname{Re} z \leq|\operatorname{Re} z| \leq|z| \text { and } \operatorname{Im} z \leq|\operatorname{Im} z| \leq|z| \\
\left|z_{1}+z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \\
\left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \\
\left|z_{1}-z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|
\end{gathered}
$$

