Complex Analysis

Class 22: Friday March 25

TITLE The Many, Many Implications of Cauchy's Integral Formula(s)
CURRENT READING Zill \& Shanahan, §5.4-5.5
HOMEWORK SET \#10 (DUE WED APR 6)
Zill \& Shanahan, §Chapter 5 Review 4,5,6,7,8,9,17. 38*,40*. §6.4 2,6,20. 25*.
$\S 6.57,2,12,17,23$. $\S 6.63,8,15,24$ *.

SUMMARY

Cauchy's Integral Formula leads to some of the most famous results in mathematics.

Applications of Cauchy's Integral Formula

Let C be a simple closed (positively oriented) contour. If f is analytic in some simply connected domain D containing C and z_{0} is any point inside of C, then

$$
\oint_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)
$$

and

$$
\oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{m}} d z=\frac{2 \pi i}{(m-1)!} f^{(m-1)}\left(z_{0}\right)
$$

These two results lead to a number of other results. Actually, the two formulas are just restatement of one formula, known as the generalized Cauchy Integral Formula. Can you see how the first expression ($\mathbf{C I F}$) is just a special case ($m=$??) of the second one?

EXAMPLES

We have rewritten the integral formulas in the way above so that we can use them to actually evaluate integrals. Let's to do the following two.
$\oint_{C} \frac{e^{5 z}}{(z-1)^{3}} d z=$
(where C is $|z|=2$ traversed once clockwise)
$\int_{C} \frac{2 z+1}{z(z-1)^{2}} d z=$

(where C is given in the sketch)

There are numerous theorems which directly follow from Cauchy's Integral Formula. I have listed a few of the more famous ones below...

Implications of Cauchy's Integral Formula

Morera's Theorem

If $f(z)$ is continuous in a simply-connected region R and if $\oint_{C} f(z) d z=0$ around every simple closed curve C in R, then $f(z)$ is analytic in R.
(NOTE: Morera's Theorem is the converse of the Cauchy-Goursat theorem.)

Cauchy's Inequality

If $f(z)$ is analytic inside and on a circle of radius r and centered at $z=z_{0}$ then

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{M \cdot n!}{r^{n}} \quad n=0,1,2, \ldots
$$

where M is an upper bound on $|f(z)|$ on C

Liouville's Theorem

Suppose that for all z in the entire complex plane, if $f(z)$ is analytic and bounded, (i.e. $|f(z)|<$ M for some real constant $M)$ then $f(z)$ must be a constant.

Fundamental Theorem of Algebra

Every polynomial equation $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}=0$ with degree $n \geq 1$ and $a_{n} \neq 0$ has atleast one root.

Gauss' mean value theorem

If $f(z)$ is analytic inside and on a circle C with center z_{0} and radius r then $f\left(z_{0}\right)$ is the mean of the values of $f(z)$ on C, namely

$$
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) d \theta
$$

Maximum modulus theorem
If $f(z)$ is analytic inside and on a simple closed curve C and is not identically equal to a constant, then the maximum value of $|f(z)|$ occurs on C.

Minimum modulus theorem
If $f(z)$ is analytic inside and on a simple closed curve C and $f(z) \neq 0$ inside C, then the minimum value of $|f(z)|$ occurs on C.

The Argument Theorem

Let $f(z)$ be analytic inside and on a simple closed curve C except for a finite number of poles inside C. Then

$$
\frac{1}{2 \pi i} \oint \frac{f^{\prime}(z)}{f(z)} d z=N-P
$$

where N and P are the number of zeroes and poles of $f(z)$ inside C

Rouché Theorem

If $f(z)$ and $g(z)$ are analytic inside and on a simple closed curve C and if $|g(z)|<|f(z)|$ on C, then $f(z)+g(z)$ and $f(z)$ have the same number of zeros inside of C.

