Complex Analysis

Math 312 Spring 2016 **69 2016 Ron Buckmire**

Fowler 309 MWF 11:45am-12:40pm http://sites.oxy.edu/ron/math/312/16/

Class 14: Monday February 22

TITLE The Complex Logarithm
CURRENT READING Zill & Shanahan, Section 4.1
HOMEWORK SET #6 (DUE WED MAR 16)
Zill & Shanahan, §4.1.1: 3,4,7,8, 17*; §4.1.2: 23,31,34,42 44*;
Zill & Shanahan, §4.2: 4,9,10,17, 13*; 4.3: 2,9,37 53*;

SUMMARY

We shall return to the murky world of branch cuts as we expand our repertoire of complex functions to encounter the complex logarithm function.

The Complex Logarithm $\log z$

Let us define $w = \log z$ as the inverse of $z = e^w$. **NOTE**

Your textbook (Zill & Shanahan) uses \ln instead of \log and \ln instead of \log . We know that $\exp[\ln |z| + i(\theta + 2n\pi)] = z$, where $n \in \mathbb{Z}$, from our knowledge of the exponential function.

So we can define

 $\log z = \ln |z| + i \arg z = \ln |z| + i \operatorname{Arg} z + 2n\pi i = \ln r + i\theta$

where r = |z| as usual, and $\theta = \arg(z)$ is the argument of z. This is significant because it means that the complex logarithm function $\log z$ is a ______ function.

If we only use the principal value of the argument, then we define the principal value of $\log z$ as Log z, where

$$\operatorname{Log} z = \ln |z| + i \operatorname{Arg} z = \operatorname{Log} |z| + i \operatorname{Arg} z$$

Exercise

Compute Log (-2) and log(-2), Log (2i), and log(2i), Log (4) and log(4)

Logarithmic Identities

 $z = e^{\log z}$ but $\log e^z = z + 2k\pi i$ (Is this a surprise?) $\log(z_1 z_2) = \log z_1 + \log z_2$ $\log\left(\frac{z_1}{z_2}\right) = \log z_1 - \log z_2$ However these do not necessarily apply to the princip

However these do not necessarily apply to the principal value of the logarithm, written as Log z. $\boxed{\text{QUESTION}}$ Is Log (-2) + Log(-2) = Log(4)? Is Log(2) + Log(-2) = Log(-4)?

Log z: the Principal Branch of $\log z$

Log z is a single-valued function and is analytic in the domain D^* consisting of all points of the complex plane *except for those lying on the nonpositive real axis*, where

$$\frac{d}{dz} \operatorname{Log} z = \frac{1}{z}$$

Exercise

Sketch the set D^* in the space below convince yourself that it is an open connected set. (Ask yourself: Is every point in the set an interior point?) **Describe** D^* using set notation.

The set of points $\{z \in \mathbb{C} : \text{Re } z \leq 0 \cap \text{Im } z = 0\}$ is a line of discontinuities known as a **branch cut**. By putting in a branch cut we say that we "construct Log z from log z."

NOTE

The **principal <u>BRANCH</u>** of log z is defined to be equal to $\ln |z| + i\theta$ where $-\pi < \theta < \pi$. The **principal** <u>VALUE</u> of log z is defined to be equal to $\ln |z| + i\theta$ where $-\pi < \theta \le \pi$.

The Inverse Function of e^z Is The Principal Value of $\log z$

Recall from your past experience with the real exponential function $f(x) = e^x$, $-\infty \ll x \ll \infty$ and the real natural logarithm function $g(x) = \ln(x)$, x > 0 that they are inverses of each other. This means that f(g(x)) = x and g(f(x)) = x.

Similarly, the inverse of the complex exponential function $f(z) = e^z$ is the **principal value** of the complex logarithm function.

EXAMPLE

Let's confirm that the inverse function of the complex exponential function $f(z) = e^z$ (where $z \in \mathbb{C}$) is g(z) = Log(z) (where |z| > 0 and $-\pi < \text{Arg } z \leq \pi$), the principal value of the complex logarithm function.

Complex Analysis Analyticity of Log z

We can use a version of the Cauchy-Riemann Equations in polar coordinates to help us investigate the analyticity of $\mbox{ Log }z$

Q: Why don't we investigate the analyticity of log z? **A:** Because $\log(z)$ is not a single-valued function! If $x = r \cos \theta$ and $y = r \sin \theta$ one can rewrite f(z) = u(x, y) + iv(x, y) into $f = u(r, \theta) + iv(r, \theta)$ in that case, the CREs become:

$$u_r = \frac{1}{r} v_\theta, \qquad v_r = -\frac{1}{r} u_\theta$$

and the expression for the derivative $f'(z) = u_x + iv_x$ can be re-written

$$f'(z) = e^{-i\theta}(u_r + iv_r)$$

Exercise

Using this information, show that Log z is analytic and that $\frac{d}{dz} \text{ Log } z = \frac{1}{z}$. (HINT: You will need to write down $u(r, \theta)$ and $v(r, \theta)$ for Log z)

Worksheet 14

Log z As A Mapping Function

Circular Arcs Get Mapped To Vertical Line Segments $w = \text{Log } z \text{ maps the set } \{|z| = r \cap \theta_0 \leq \text{Arg } z \leq \theta_1\}$ onto the vertical line segment $\{ \text{Re } (w) = \text{Ln}(r) \cap \theta_0 \leq \text{Im } (w) \leq \theta_1 \}$

Segments of Rays Get Mapped To Horizontal Line Segments

 $w = \text{Log } z \text{ maps the set } \{r_0 \leq |z| \leq_1 \cap \text{Arg } z = \theta\}$ onto the horizontal line segment $\{\text{Ln}(r_0) \leq \text{Re } (w) \leq \text{Ln}(r_1) \cap \text{Im } (w) = \theta_1\}$

Complex Plane Without Origin Gets Mapped To Infinite Horizontal Strip Of Width 2π $w = \text{Log } z \text{ maps the set } |z| > 0 \text{ onto the region } \{-\infty < \text{Re } (w) < \infty \cap -\pi < \text{Im } (w) \le \pi \}$

GROUPWORK

Find the image of the annulus $2 \le |z| \le 4$ under the mapping of the principal logarithm Log z.

Zill & Shanahan, page 164, #35. Solve the equation $e^{z-1} = -ie^3$.