Complex Analysis

Math 312 Spring 2016
(8.) 2016 Ron Buckmire

Fowler 309 MWF 11:45am-12:40pm
http://sites.oxy.edu/ron/math/312/16/

Class 10: Wednesday February 10

TITLE Differentiability of Complex Functions
CURRENT READING Zill \& Shanahan, Section 3.2
HOMEWORK SET \#4 (DUE WED FEB 17)
Zill \& Shanahan, Chap 2 Review 1-10, §3.1.1: \#2, 11, 17, 20*; §3.1.2: \#28, 31, 37, 50*;

SUMMARY

We shall move on from our discussion of continuity to a discussion of differentiability for a complex function of a complex variable. This will lead us to the idea of analyticity and the famous Cauchy-Riemann Equations.

Definition of the Derivative

Let f be defined in a neighborhood around z_{0}. The derivative of f at z_{0}, denoted by $f^{\prime}\left(z_{0}\right)$, is defined by

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

provided the above limit exists. The function f is said to be differentiable at z_{0}. Consider $f(z)=z^{2}$. Write down the expression $\frac{\Delta w}{\Delta z}=\frac{f(z+\Delta z)-f(z)}{\Delta z}$

The derivative $\frac{d w}{d z}=f^{\prime}(z)$ is defined as $f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{\Delta w}{\Delta z}$
Evaluate this limit for our function $f(z)=z^{2}$.

Write down $f^{\prime}(z)$

Write down the real and imaginary parts of the function $f(z)=z^{2}$

Write down the real and imaginary parts of the function $f^{\prime}(z)$ See any patterns between the real and imaginary parts of $f(z)$ and $f^{\prime}(z)$?

Rules of Differentiation

The standard rules of differentiating function that you learned for real functions basically apply to complex functions. Namely:

$$
\frac{d}{d z}(c)=0 \quad \frac{d}{d z}(z)=1 \quad \frac{d}{d z}\left(z^{n}\right)=n z^{n-1} \quad \frac{d}{d z}\left(e^{z}\right)=e^{z}
$$

Linearity

$$
\frac{d}{d z}[c f(z)+g(z)]=c f^{\prime}(z)+g^{\prime}(z) \quad c \text { constant }
$$

Product Rule

$$
\frac{d}{d z}[f(z) g(z)]=f^{\prime}(z) g(z)+f(z) g^{\prime}(z)
$$

Quotient Rule

$$
\frac{d}{d z}\left[\frac{f(z)}{g(z)}\right]=\frac{f^{\prime}(z) g(z)-f(z) g^{\prime}(z)}{(g(z))^{2}}
$$

Aspects of Differentiation

One of the most important aspects to remember about differentiability and continuity is:

DIFFERENTIABILITY \Rightarrow CONTINUITY CONTINUITY DOES NOT IMPLY DIFFERENTIABILITY.

GroupWork

Given $g(z)=z^{2}+z+i$ and $f(z)=\frac{1}{z}$
$g^{\prime}(z)=$
$f^{\prime}(z)=$
$[g(z) f(z)]^{\prime}=$
$[g(z) / f(z)]^{\prime}=$

