Complex Analysis

Math 312 Spring 2016 **69 2016 Ron Buckmire**

Fowler 309 MWF 11:45am-12:40pm http://sites.oxy.edu/ron/math/312/16/

Class 10: Wednesday February 10

TITLE Differentiability of Complex Functions
CURRENT READING Zill & Shanahan, Section 3.2
HOMEWORK SET #4 (DUE WED FEB 17)
Zill & Shanahan, Chap 2 Review 1-10, §3.1.1: #2, 11, 17, 20*; §3.1.2: #28, 31, 37, 50*;

SUMMARY

We shall move on from our discussion of continuity to a discussion of differentiability for a complex function of a complex variable. This will lead us to the idea of **analyticity** and the famous Cauchy-Riemann Equations.

Definition of the Derivative

Let f be defined in a neighborhood around z_0 . The **derivative** of f at z_0 , denoted by $f'(z_0)$, is defined by

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

provided the above limit exists. The function f is said to be differentiable at z_0 . Consider $f(z) = z^2$. Write down the expression $\frac{\Delta w}{\Delta z} = \frac{f(z + \Delta z) - f(z)}{\Delta z}$

The derivative $\frac{dw}{dz} = f'(z)$ is defined as $f'(z) = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z}$ Evaluate this limit for our function $f(z) = z^2$.

Write down f'(z)

Write down the real and imaginary parts of the function $f(z) = z^2$

Write down the real and imaginary parts of the function f'(z) See any patterns between the real and imaginary parts of f(z) and f'(z)?

Rules of Differentiation

The standard rules of differentiating function that you learned for real functions basically apply to complex functions. Namely:

$$\frac{d}{dz}(c) = 0 \qquad \frac{d}{dz}(z) = 1 \qquad \qquad \frac{d}{dz}(z^n) = nz^{n-1} \qquad \frac{d}{dz}(e^z) = e^z$$

Linearity

$$\frac{d}{dz}[cf(z) + g(z)] = cf'(z) + g'(z) \qquad c \text{ constant}$$

Product Rule

$$\frac{d}{dz}[f(z)g(z)] = f'(z)g(z) + f(z)g'(z)$$

Quotient Rule

$$\frac{d}{dz}\left[\frac{f(z)}{g(z)}\right] = \frac{f'(z)g(z) - f(z)g'(z)}{(g(z))^2}$$

Aspects of Differentiation

One of the most important aspects to remember about differentiability and continuity is:

$\mathbf{DIFFERENTIABILITY} \Rightarrow \mathbf{CONTINUITY}$

CONTINUITY DOES NOT IMPLY DIFFERENTIABILITY.

GROUPWORK

Given $g(z) = z^2 + z + i$ and $f(z) = \frac{1}{z}$ g'(z) =

f'(z) =

[g(z)f(z)]' =

[g(z)/f(z)]' =