Complex Analysis

Fowler 309 MWF 11:45am-12:40pm
Math 312 Spring 2016
(3.) 2016 Ron Buckmire

Class 7: Wednesday February 3

TITLE Graphical Interpretation of Complex Linear Functions
CURRENT READING Zill \& Shanahan, Section 2.3
HOMEWORK Zill \& Shanahan, §2.3 9, 18, 19, 34, 29*.

SUMMARY

We shall focus on the graphical interpretations of the mapping $f(z)=a z+b$. We generally can decompose linear complex mappings into 3 dominant characteristics or components. That is, mappings can be described as a combination of rotation, translation and magnification.

Rotation

Consider $R(z)=i z$. How does this function represent a rotation mapping?
(Consider its effect on the set of points $\{z \in \mathbb{C}: \operatorname{Im} z=0\}$.)

Scaling

Consider $S(z)=2 z$. How does this function represent a scaling mapping? (Consider the effect of S on the set of points $\{z \in \mathbb{C}:|z|=1\}$.)

Translation

Consider $T(z)=z-i+2$. How does this function represent a translation mapping?
(Consider the effect of T on the set of points $\{z \in \mathbb{C}:|z|=1\}$.)

Complex Linear Function as Mapping

The complex linear function $f(z)=a z+b$ can be written as

$$
w=f(z)=a z+b=|a|\left(\frac{a}{|a|} z\right)+b
$$

which is the composition of the mappings, $f_{3}(z)=\left(\frac{a}{|a|}\right) z, f_{2}(z)=|a| z$ and $f_{1}(z)=z+b$.
EXAMPLE 1
We can show that $f(z)=a z+b=f_{1}\left(f_{2}\left(f_{3}(z)\right)\right)=\left(f_{1} \circ\left(f_{2} \circ f_{3}\right)\right)(z)$

Exercise 1

In words, describe each of the following mappings.
$f_{1}(z)=z+b$ is
$f_{2}(z)=|a| z$ is
$f_{3}(z)=\left(\frac{a}{|a|}\right) z$ is
In order of application, the linear mapping $f(z)=a z+b$ is a \qquad followed by a followed by a \qquad .

Reflection Mapping Is Conjugation

Another familiar action on point sets in the plane is the reflection mapping. However, it is not represented by a linear mapping.
Consider $f(z)=\bar{z}$. How does this function represent a reflection mapping?
(Consider the effect of f on the set of points $\{z \in \mathbb{C}: \operatorname{Im} z=2\}$)

GROUPWORK

Consider the function $w=F(z)=R(S(T(z)))$) where $R(z)=i z, S(z)=2 z$ and $T(z)=z-i+2$. Find the image of \mathcal{S}, the disc $|z|=1$, under the action of $F(z)$ in two different ways.

1) Show the composition of three mappings as a sequence which takes \mathcal{S} to the final image \mathcal{S}^{\prime} in the space below. (Write down in words what happens at each step, paying careful attention to what happens to the center of the circle.)
2) Show algebraically that $w=T(z)=2 i z+2+4 i$ and that if the pre-image is $|z|=1$ then the image is $|w-2-4 i|=2$.
