Complex Analysis

Math 312 Spring 2016

2016 Ron Buckmire

Fowler 309 MWF 11:45am-12:40pm http://sites.oxy.edu/ron/math/312/16/

Class 6: Monday February 1

TITLE Functions of a Complex Variable

CURRENT READING Zill & Shanahan, Section 2.1-2.2

HOMEWORK Zill & Shanahan, §2.1: #3, 8, 14, 20, 36, **27***; §2.2: 7, 11, 12, 22, **27***

SUMMARY

We expand our exploration of complex variables to start considering functions of a complex variable. One of the first things you'll notice is the immediate geometric interpretations of function evaluation.

Functions of a Complex Variable

Given a set S of complex numbers, a function f is a rule which assigns to each $z \in S$ a complex number w. The set S is known as the **domain of definition** of f. (NOTE: The "domain of definition" is not necessarily a **domain** in the formal mathematical sense of the word we discussed earlier.) The set of all $w \in \mathbb{C}$ given by w = f(S) is called the **image of** S under f or the range of f and is often denoted S'.

The value w = f(z) can be written as u + iv, in other words:

$$w = f(z) = f(x + iy) = u(x, y) + iv(x, y)$$

where u(x,y) and v(x,y) are real functions of two real variables. We can really think of a complex function as two associated functions of two variables. (This is the main reason why *Multivariable Calculus* is the pre-requisite for this class!)

EXAMPLE 1

Write $f(z) = z^2 - z + 2i$ in the form w = u(x, y) + iv(x, y)

In addition, given a complex function w(x,y) you can always write it in terms of z, \overline{z} and constants.

Exercise 1

Write $w(x,y) = x^2 + iy^2$ in terms of z and \overline{z} . (HINT: recall Quiz #1)

Real Function of a Complex Variable

It is possible to have a function of a complex variable which only produces real values. Some examples of such functions are ______, ____ and _____.

Complex Functions As Mappings

As usual, operations using complex variables have geometric significance. First, let's get more practice evaluating functions of a complex variable:

Using $f(z) = z^3$, compute

- (a) f(2) =
- **(b)** $f(\sqrt{2} + i\sqrt{2}) = f(2e^{i\pi/4})$
- (c) f(2i) =

We can't really graph a complex function (**Why not?**), so what we usually do instead is show what the image of a complex function is on particular sets of points in the complex plane.

Complex Function of a (Single) Real Variable

Suppose x(t) and y(t) are functions of a real variable t. The set of points \mathcal{D} consisting of all points z(t) = x(t) + iy(t) for $a \le t \le b$ is called a **parametric curve in the complex plane** or a **complex parametric curve**. The function z(t) is also called the **parametrization** of the curve \mathcal{D} in the plane.

Common Parametric Curves in the Complex Plane

Line Segment (from z_0 to z_1)

$$z(t) = z_0(1-t) + z_1t, \qquad 0 \le t \le 1$$

Ray (emanating from z_0 at angle α to the horizontal axis)

$$z(t) = z_0 + te^{i\alpha}, \qquad 0 \le t \le \infty$$

Circle (centered at z_0 with radius r)

$$z(t) = z_0 + re^{it}, \qquad 0 \le t \le 2\pi$$

Image of a Parametric Curve under a Complex Mapping

Given a complex function of a complex variable w = f(z) and a complex parametric curve \mathcal{D} represented by z(t) for $a \leq t \leq b$ the function w(t) = f(z(t)) for $a \leq t \leq b$ is the parametrization of \mathcal{D}' , the image of \mathcal{D} .

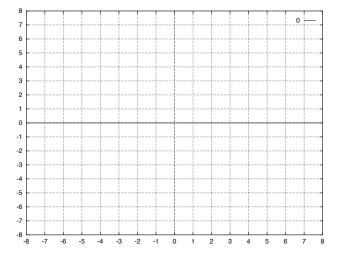
EXAMPLE 2

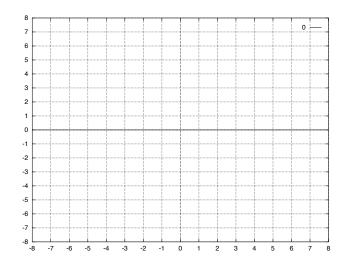
Example 3, ZS pg. 58. Let's find the image of the line segement from 1 to i under the mapping $w = \overline{iz}$.

GROUPWORK

If you consider w = f(z) a mapping from the z-plane to the w-plane, find the image \mathcal{D}' of \mathcal{D} (the "quarter-disc" of radius 2 centered at the origin) in the first quadrant of the z-plane under the mapping $f(z) = z^3$.

- 1. Write down a definition of the "quarter disk of radius 2" using complex inequalities
- 2. Shade in this region on your (x, y) axes (z-plane) below (to the left)
- 3. Find a parametrization for a ray \mathcal{A} emanating from the origin that lies in the quarter-disk.
- 4. Sketch \mathcal{A} in the z-plane (to the left)
- 5. Find a parametrization for the image \mathcal{A}' of your curve \mathcal{D} under the mapping $f(z) = z^3$.
- 6. Sketch \mathcal{A}' in the w-plane (to the right). Write down a description of this curve.
- 7. Use your knowledge of the image of a single curve in the region of interest to determine the image of the entire region. Shade in the mapped region on your (u, v) axes (w-plane) below (to the right)

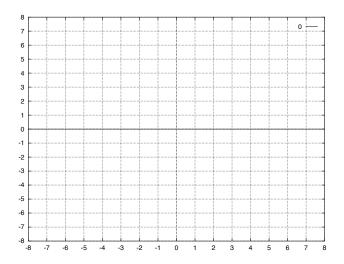


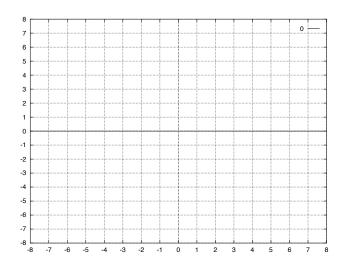


GROUPWORK

On the following set of axes of axes, do the following:

- 1. Find a parametrization for a curved arc \mathcal{B} that lies in \mathcal{D} .
- 2. Sketch \mathcal{B} in the z-plane (to the left)
- 3. Find a parametrization for the image \mathcal{B}' of your curve \mathcal{B} under the mapping $f(z) = z^3$.
- 4. Sketch \mathcal{B}' in the w-plane (to the right)
- 5. Use your knowledge of the image of a single curve in the region of interest to determine the image of the entire region of interest under the given mapping. Shade in the mapped region \mathcal{D}' on your (u, v) axes (w-plane) below (to the right)





Exercise

On the following set of axes, sketch the pre-image and the the image of the mapping of the unit "quarter-disk" under $f(z) = 2z^4 - 2 - i$ looks like in the w-plane. Use set notation to describe the image.

