Complex Analysis

Math 312 Spring 2016 2016 Ron Buckmire

Fowler 309 MWF 11:45am-12:40pm http://sites.oxy.edu/ron/math/312/16/

Class 3: Monday January 25

TITLE Polar and Exponential Forms of Complex Numbers
READING Zill & Shanahan, §1.3
HOMEWORK Zill & Shanahan, §1.3 # 19, 25, 34, 37, 38 Extra Credit: # 44

SUMMARY

We have been considering the complex plane as an analogue to the 2-D cartesian xy-plane. You may recall that there are other coordinate systems that can be imposed on the 2-D plane. One of those coordinate systems is known as **polar coordinates**.

Exercise 1

Write $(1, \sqrt{3})$ in polar coordinates.

What is the angle between a line drawn from (0,0) to $(1,\sqrt{3})$ and the x-axis?

The complex number which is found at $(1, \sqrt{3})$ is _____.

It can also be written as $z = r(\cos \theta + i \sin \theta) = |z| \operatorname{cis} \theta$

This is known as the **polar form** of the complex number.

This angle θ corresponding to the complex number z is called the **principal argument** of z, denoted by Arg z. By tradition, $-\pi < \text{Arg } z \leq \pi$ and Arg 0 is undefined.

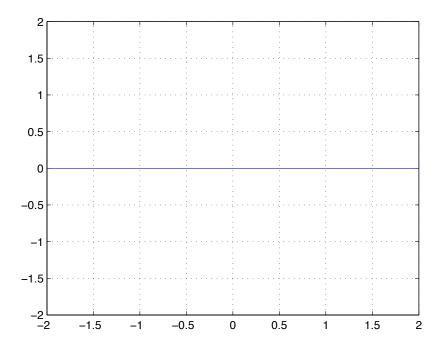
The set of all values θ of such that $\tan \theta = \frac{\operatorname{Im} z}{\operatorname{Re} z}$ is known as the **argument** of z, or $\arg z$

 $\arg z = \operatorname{Arg} z + 2n\pi$ $(n = 0, \pm 1, \pm 2, ...)$ (1)

GroupWork

Therefore, arg $(1 + \sqrt{3}i)$ is _____

Write $z_1 = -1 - i$ and $z_2 = 1 - i$ in **polar form** and sketch them on the given axes.



Do you see any interesting geometrical relationship between z_1 and z_2 ?

Do you notice any interesting algebraic relationship between z_1 and z_2 ?

Write down a general relationship between $\arg(z_1 z_2)$ and $\arg(z_1)$ and $\arg(z_2)$

Complex Analysis

Worksheet 3

Exponential Forms Of Complex Numbers Euler's Formula

You may have noticed that the expression $\cos \theta + i \sin \theta$ is so common that the shorthand $\operatorname{cis} \theta$ has been developed. Another, even more compact symbol can be derived using **Euler's Formula**:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Note $\theta = \arg z$ and is a real number in these formulas. So, now we can write complex numbers in **exponential form**

$$z = |z|e^{i\theta} = re^{i\theta}$$

Exercise 2

A. Compute the value of $e^{\pi i}$

B. Write 1 + i in exponential form

C. Write $(1-i)^5$ in rectangular form (i.e. the usual x + iy)

De Moivre's Formula

 $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$

We will prove this is true by first writing down z^n in polar form and exponential form and equating them.