Complex Analysis

Math 312 Spring 2016
(8.) 2016 Ron Buckmire

Fowler 309 MWF 11:45am-12:40pm
http://sites.oxy.edu/ron/math/312/16/

Class 3: Monday January 25

TITLE Polar and Exponential Forms of Complex Numbers
READING Zill \& Shanahan, §1.3
HOMEWORK Zill \& Shanahan, §1.3 \# 19, 25, 34, 37, 38 Extra Credit: \# 44

SUMMARY

We have been considering the complex plane as an analogue to the 2-D cartesian $x y$-plane. You may recall that there are other coordinate systems that can be imposed on the 2-D plane. One of those coordinate systems is known as polar coordinates.

Exercise 1

Write $(1, \sqrt{3})$ in polar coordinates.

What is the angle between a line drawn from $(0,0)$ to $(1, \sqrt{3})$ and the x-axis?

The complex number which is found at $(1, \sqrt{3})$ is \qquad .
It can also be written as $z=r(\cos \theta+i \sin \theta)=|z| \operatorname{cis} \theta$
This is known as the polar form of the complex number.
This angle θ corresponding to the complex number z is called the principal argument of z, denoted by $\operatorname{Arg} z$. By tradition, $-\pi<\operatorname{Arg} z \leq \pi$ and $\operatorname{Arg} 0$ is undefined.
The set of all values θ of such that $\tan \theta=\frac{\operatorname{Im} z}{\operatorname{Re} z}$ is known as the $\operatorname{argument}$ of z, or $\arg z$

$$
\begin{equation*}
\arg z=\operatorname{Arg} z+2 n \pi \quad(n=0, \pm 1, \pm 2, \ldots) \tag{1}
\end{equation*}
$$

GroupWork

Therefore, $\arg (1+\sqrt{3} i)$ is \qquad .

Write $z_{1}=-1-i$ and $z_{2}=1-i$ in polar form and sketch them on the given axes.

Do you see any interesting geometrical relationship between z_{1} and z_{2} ?

Do you notice any interesting algebraic relationship between z_{1} and z_{2} ?

Write down a general relationship between $\arg \left(z_{1} z_{2}\right)$ and $\arg \left(z_{1}\right)$ and $\arg \left(z_{2}\right)$

Exponential Forms Of Complex Numbers

Euler's Formula

You may have noticed that the expression $\cos \theta+i \sin \theta$ is so common that the shorthand cis θ has been developed. Another, even more compact symbol can be derived using Euler's Formula:

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

Note $\theta=\arg z$ and is a real number in these formulas. So, now we can write complex numbers in exponential form

$$
z=|z| e^{i \theta}=r e^{i \theta}
$$

Exercise 2

A. Compute the value of $e^{\pi i}$
B. Write $1+i$ in exponential form
C. Write $(1-i)^{5}$ in rectangular form (i.e. the usual $\left.x+i y\right)$

De Moivre's Formula

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

We will prove this is true by first writing down z^{n} in polar form and exponential form and equating them.

