1. (10 points) We want to find a formula for an entire function \(f(z) \) but all we know is that its real part is given by \(u(x, y) = x^3 - 3xy^2 - 4xy + 6 \) and that it maps the point \((1, 1)\) to the origin.

(a) (6 points) Use the Cauchy-Riemann Equations (i.e. \(u_x = v_y, \ u_y = -v_x \)) to find the imaginary part of \(f(z) \), sometimes written as \(v(x, y) \), exactly.

\[u_x = 3x^2 - 3y^2 - 4y = v_y \quad \text{(CRE)} \]

\[u_y = 0 - 6xy - 4x + 0 = -u_x = 6xy + 4x \]

\[6xy + A'(x) = 6xy + 4x \]

\[A'(x) = 4x \]

\[A(x) = 2x^2 + C \]

\[u = 3x^2 - y^2 - 2y^2 + 2x^2 + C \]

\[u(1,1) = 0 = 1 - 1 - 4 + 6 = 0 \]

\[v(1,1) = 0 = 3 - 1 - 2 + 2 + C \Rightarrow C = -2 \]

\[f = u + iv = x^3 - 3xy^2 - 4xy + 6 + i(3x^2 - 3y^2 + 2x^2 - 2) \]

(b) (4 points) Confirm that both \(v(x, y) \) and its harmonic conjugate \(u(x, y) \) are examples of functions of two variables \(\phi(x, y) \) that satisfy the 2-dimensional Laplace Equation \(\phi_{xx} + \phi_{yy} = 0 \).

\[u = x^3 - 3xy^2 - 4xy + 6 \]

\[u_x = 3x^2 - 3y^2 - 4y \]

\[u_{xx} = 6x \]

\[u_y = -6xy - 4x \]

\[u_{yy} = -6x \]

\[u_{xx} + u_{yy} = 6x - 6x = 0 \]

\[v = 3x^2y - y^3 - 2y^2 \]

\[v_x = 6xy + 4x \]

\[v_{xx} = 6y + 4 \]

\[v_y = 3x^2 - 3y^2 - 4y \]

\[v_{yy} = -6y - 4 \]

\[v_{xx} + v_{yy} = 6y - 6y \]

\[= 0 \]