Complex Analysis \& Combinatorics

Solve Combinatorial Series Using Complex Numbers

Hongjin LIN
April 22, 2016

Outline

(1) Goal

(2) Definitions

(3) Solving the problem using complex numbers
(4) Roots of Unity Filter

Goal

Solve the following Combinatorial Series:

$$
\begin{gathered}
S_{1}=\binom{n}{0}-\binom{n}{2}+\binom{n}{4}-\binom{n}{6}+\ldots=\sum_{j=0}^{n}(-1)^{j}\binom{n}{2 j} \\
S_{2}=\binom{n}{1}-\binom{n}{3}+\binom{n}{5}-\binom{n}{7}+\ldots=\sum_{j=0}^{n}(-1)^{j}\binom{n}{2 j+1}
\end{gathered}
$$

Goal

Solve the following Combinatorial Series:

$$
\begin{gathered}
S_{1}=\binom{n}{0}-\binom{n}{2}+\binom{n}{4}-\binom{n}{6}+\ldots=\sum_{j=0}^{n}(-1)^{j}\binom{n}{2 j} \\
S_{2}=\binom{n}{1}-\binom{n}{3}+\binom{n}{5}-\binom{n}{7}+\ldots=\sum_{j=0}^{n}(-1)^{j}\binom{n}{2 j+1} \\
\binom{999}{333}=\frac{999!}{333!(999-333)!}=\frac{999!}{333!(666)!}=
\end{gathered}
$$

$\binom{999}{333}=\frac{999!}{333!(999-333)!}=\frac{999!}{333!(666)!}=$

Result:

38526817469494836637415833778075843488004184990066410152589 : 969547371490221450419753869304520019987785101443227790478419 : 793357060474799644437143987497376630741744688541509589605216 : $946055975393048807187197070705706437278269803982778648046765^{\prime}$: 448260924108662559517540696615654644

$$
\binom{999}{333}=\frac{999!}{333!(999-333)!}=\frac{999!}{333!(666)!}=
$$

Result:

38526817469494836637415833778075843488004184990066410152589 : $969547371490221450419753869304520019987785101443227790478419^{\prime}$: $793357060474799644437143987497376630741744688541509589605216^{\prime}$: $946055975393048807187197070705706437278269803982778648046765^{\prime}$: 448260924108662559517540696615654644

Complex Numbers come to your rescue!

Definitions

- Combinations: A way of selecting several things out of a larger group, where order does not matter.

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

(repetition not allowed)

- Exponential Form of Complex Numbers:

$$
z=|z| e^{i \theta}, \text { where } z \in \mathbb{C} \text { and } \theta=\arg (z)
$$

- Euler's Formula:

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta)
$$

Solving the problem using complex numbers

- Consider:

$$
(1-i)^{n}=\sum_{j=0}^{n}\binom{n}{j}(-i)^{j}(1)^{n-j}=\sum_{j=0}^{n}\binom{n}{j}(-i)^{j}
$$

(derived from the Binomial Theorem)

- Note:

$$
\begin{gathered}
(-i)^{0}=1,(-i)^{1}=-i,(-i)^{2}=-1 \\
(-i)^{3}=i,(-i)^{4}=1,(-i)^{5}=-i, \ldots \\
\Downarrow \\
(-i)^{n+4}=(-i)^{n}
\end{gathered}
$$

- Expand:

$$
\begin{aligned}
& (1-i)^{n} \\
& =\sum_{j=0}^{n}\binom{n}{j}(-i)^{j} \\
& =\binom{n}{0}-i\binom{n}{1}-\binom{n}{2}+i\binom{n}{3}+\binom{n}{4}-i\binom{n}{5}-\binom{n}{6}+i\binom{n}{7}+\ldots \\
& =\left\{\binom{n}{0}-\binom{n}{2}+\binom{n}{4}-\binom{n}{6}+\ldots\right\}-i\left\{\binom{n}{1}-\binom{n}{3}+\binom{n}{5}-\binom{n}{7}+\ldots\right\} \\
& =S_{1}-i S_{2}
\end{aligned}
$$

- Therefore:

$$
\begin{gathered}
S_{1}=\Re\left((1-i)^{n}\right) \\
S_{2}=-\Im\left((1-i)^{n}\right)
\end{gathered}
$$

- From the exponential form of complex numbers and the Euler's Formula, we know:

$$
\begin{gathered}
1-i=\sqrt{2} e^{-\frac{\pi}{4} i} \\
(1-i)^{n}=(\sqrt{2})^{n} e^{-\frac{n \pi}{4} i} \\
=(\sqrt{2})^{n} \cos \left(-\frac{n \pi}{4}\right)+i(\sqrt{2})^{n} \sin \left(-\frac{n \pi}{4}\right)
\end{gathered}
$$

- Therefore:

$$
\begin{aligned}
S_{1}=\binom{n}{0} & -\binom{n}{2}+\binom{n}{4}-\binom{n}{6}+\ldots \\
& =\Re\left((1-i)^{n}\right) \\
= & (\sqrt{2})^{n} \cos \left(-\frac{n \pi}{4}\right) \\
S_{2}=\binom{n}{1} & -\binom{n}{3}+\binom{n}{5}-\binom{n}{7}+\ldots \\
& =-\Im\left((1-i)^{n}\right) \\
= & -(\sqrt{2})^{n} \sin \left(-\frac{n \pi}{4}\right)
\end{aligned}
$$

- Check:
$n=3$:

$$
\begin{gathered}
S_{1}=\binom{3}{0}-\binom{3}{2}=1-3=-2 \\
(\sqrt{2})^{3} \cos \left(-\frac{3 \pi}{4}\right)=2 \sqrt{2}\left(-\frac{\sqrt{2}}{2}\right)=-2 \checkmark \\
S_{2}=\binom{3}{1}-\binom{3}{3}=3-1=2 \\
-(\sqrt{2})^{3} \sin \left(-\frac{3 \pi}{4}\right)=-(2 \sqrt{2})\left(-\frac{\sqrt{2}}{2}\right)=2 \checkmark
\end{gathered}
$$

Roots of Unity Filter

Definition

Root of Unity

An $n^{\text {th }}$ root of unity, where n is a positive integer (i.e. $\mathrm{n}=1,2,3$,), is a number z satisfying the equation:

$$
z^{n}=1
$$

Since $1=e^{2 \pi i}$, we can write an $n^{t h}$ root as $w=e^{2 \pi i / n}$. All other $n^{t h}$ roots are given by the integer powers of this root between 0 and $n-1$: the roots are $1, \mathrm{w}, w^{2}, \ldots, w^{n-1}$. By factoring $z^{n}-1=0$, we can obtain a useful identity:

$$
z^{n 1}=(z-1)\left(z^{n-1}+z^{n-2}+\ldots+z+1\right)=0
$$

This means that all $n^{\text {th }}$ roots of unity other than 1 satisfy the equation:

$$
1+w+w^{2}+\ldots+w^{n-1}=0
$$

- Roots of Unity Filter:

Roots of Unity Filter is useful when we are trying to find a specific set of coefficients of a polynomial function.

Let $f(x)$ be a polynomial function:

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}
$$

- the sum of coefficients:

$$
a_{n}+a_{n-1}+\ldots+a_{2}+a_{1}+a_{0}=f(1)
$$

- the sum of coefficients whose terms have even exponents:

$$
\frac{f(1)+f(-1)}{2}
$$

- what about the sum of coefficients whose exponents are multiples of three?

Solving Problem Using Roots of Unity Filter

- Find the sum of the coefficients of the polynomial $f(x)=(x+1)^{99}$ for all powers of x that are divisible by 3.

This question is essentially asking us to solve the combinatorial equation (from the Binomial Theorem):

$$
\sum_{j=0}^{33}\binom{99}{3 j}
$$

since $(x+1)^{99}=1+\binom{99}{1} x+\binom{99}{2} x^{2} \ldots+\binom{99}{99} x^{99}=\sum_{j=0}^{99}\binom{99}{j} x^{j}$

