Complex Hermitian Matrices

Jeh Johnson
Occidental College '17

April 27, 2016

Overview

- Types of complex matrices
- Properties of the Hermitian matrix
- Ways in the Hermitian matrix can be useful

Complex Matrices

- Hermetian Matrix $A=\overline{A^{T}}$
- Skew-Hermitian Matrix $-A=\overline{A^{T}}$
- Unitary Matrix $A^{-1}=\overline{A^{T}}$

The Hermitian Matrix

Definition: A Hermitian Matrix is a square matrix with complex entries that is equal to its own complex conjugate. We write this as: $A=\overline{A^{T}}$

Properties of a Hermitian Matrix

- The values on the diagonal are always real.
- The matrix cannot be symmetric if it has complex values.
- The matrix must be symmetric if it has only real values.
- All Eigenvalues of a Hermitian matrix are real.
- The sum of two Hermitian matrices is a Hermitian matrix.
- The product of two Hermitian matrices is a Hermitian matrix iff $A B=B A$. Meaning $A^{n}=$ Hermitian.
- The inverse of an invertible Hermitian matrix is Hermitian.

Examples of Hermitian Matrices

Let

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & 1-i & 2 \\
1+i & 3 & i \\
2 & -i & 0
\end{array}\right] \\
B=\left[\begin{array}{ccc}
2 & 3+2 i & 1 \\
3-2 i & 4 & 2 i \\
1 & -2 i & 1
\end{array}\right] \\
C=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 0 \\
3 & 0 & 3
\end{array}\right]
\end{gathered}
$$

Note: All of the entries on the diagonal are real as they must equal the complex conjugate of themselves. And the matrices with complex entries are not symmetric.

Examples of Hermitian Matrices

$$
\begin{array}{ll}
A=\overline{A^{\top}} & A \\
& =\left[\begin{array}{ccc}
1 & 1-i & 2 \\
1+i & 3 & i \\
2 & -i & 0
\end{array}\right] \\
A^{T} & =\left[\begin{array}{ccc}
1 & 1+i & 2 \\
1-i & 3 & -i \\
2 & i & 0
\end{array}\right] \\
\overline{A^{T}} & =\left[\begin{array}{ccc}
1 & 1-i & 2 \\
1+i & 3 & i \\
2 & -i & 0
\end{array}\right]
\end{array}
$$

The Sum of Hermitian matrices is Hermitian:

$$
\begin{gathered}
A+B=\left[\begin{array}{ccc}
1 & 1-i & 2 \\
1+i & 3 & i \\
2 & -i & 0
\end{array}\right]+\left[\begin{array}{ccc}
2 & 3+2 i & 1 \\
3-2 i & 4 & 2 i \\
1 & -2 i & 1
\end{array}\right] \\
A+B=\left[\begin{array}{ccc}
(1+2) & (1-i)+(3+2 i) & (2+1) \\
(1+i)+(3-2 i) & (3+4) & (i+3 i) \\
(2+1) & (-i-2 i) & (0+1)
\end{array}\right] \\
A+B=\left[\begin{array}{ccc}
3 & 4+i & 3 \\
4-i & 7 & 3 i \\
3 & -3 i & 1
\end{array}\right]
\end{gathered}
$$

$A+B$ by defintion is a Hermitian matrix. Notice the values on the diagonal as well as each element equals the complex conjugate of its transpose.

Product of Hermitian matrices is Hermitian $\Leftrightarrow A B=B A$: let $n=2$

$$
\begin{gathered}
A^{n}=\left[\begin{array}{ccc}
1 & 1-i & 2 \\
1+i & 3 & i \\
2 & -i & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 1-i & 2 \\
1+i & 3 & i \\
2 & -i & 0
\end{array}\right] \\
A^{2}=\left[\begin{array}{ccc}
4 & 4-6 i & 3+i \\
4+6 i & 12 & 2+5 i \\
3-i & 2-5 i & 5
\end{array}\right]
\end{gathered}
$$

A^{2} by definition is a Hermitian matrix. Notice the values on the diagonal as well as each element equals the complex conjugate of its transpose.

How are Hermitian Matrices Useful?

By identifying upon visual inspection if the matrix has complex values...

- with real values along the diagonal
- with the element $i^{\text {th }}$ column and the $j^{\text {th }}$ row equaling the complex conjugate of the element in the $j^{t h}$ column and the $i^{\text {th }}$ row
Then we can assume the further properties of a Hermitian matrix. Such that the matrix will always have real eigenvalues, the sum of Hermitian matrices will also be Hermitian, the product of Hermitian matrices will be Hermitian iff $A B=B A$, and the inverse of an invertible Hermitian matrix will be Hermitian.

Muchas Gracias

