1. "If \(f(\overline{z}) \) is a complex function, then \(f(x+oi) \) must be a real number." **FALSE**

 Clearly, \(f(\overline{z}) = iz \) is an example of a function where \(f(x+oi) = ix \) which is **NOT** a real number.

2. "\(\arg(z) \) is a complex function." **FALSE**

 \(\arg(z) \) outputs multiple values for each input so it is **NOT** a function.

3. "The domain of the function \(f(z) = \frac{1}{z^2+i} \) is all complex numbers." **FALSE**

 The values \(z^2+i = 0 \) are **NOT** in the domain of \(f(z) \).

4. "The domain of the function \(f(z) = e^{z^2} - (1+i)z+2 \) is all complex numbers." **TRUE**

5. "If \(f(\overline{z}) \) is a complex function with \(u(x,y) = 0 \), then the range of \(f \) lies in the imaginary axis." **TRUE**

6. "The entire complex plane is mapped onto the real axis \(v=0 \) by \(w = z + \overline{z} \)." **TRUE**

 \[w = (x+iy) + (x-iy) = 2x \text{ where } x \in \mathbb{R} \]

 So \(w \in \mathbb{R} \)

7. "The entire complex plane is mapped onto the unit circle \(|w| = 1 \) by \(w = \frac{z}{1+|z|^2} \)." **FALSE**

 \[|w| = \left| \frac{z}{1+|z|^2} \right| < 1 \]

 \[|z| = \left| \frac{1}{1+|z|^2} \right| < 1 \]
8. "The range of the function \(f(x) = \text{Arg}(x) \) is all real numbers." \[\text{FALSE} \]

The range of \(\text{Arg}(x) \) is \(\{ x \in \mathbb{R} : -\pi < x \leq \pi \} \).

9. "The image of the circle \(|z - z_0| = p \) under a linear mapping is a circle with a possibly different center, but the same radius." \[\text{FALSE} \]

\(w = 2z \) is a linear mapping and it changes \(|z - z_0| = p \) to be \(|w - 2z_0| = 2p \). Center moved and radius increased.

\[z_{\{1} = z_0 + p e^{i \theta}, \quad 0 \leq \theta \leq 2\pi \]
\[w = 2z = 2z_0 + 2p e^{i \theta}, \quad 0 \leq \theta \leq 2\pi \]

10. "The linear mapping \(w = (1 - \sqrt{3}i)z^2 + 2 \) is by rotating through an angle of \(\frac{\pi}{3} \) radians clockwise about the origin, magnifying by a factor of 2, then translating by 2. \[\text{TRUE} \]

\[R(z) = e^{-\frac{\pi i}{3} z} \]
\[S(z) = 2z \]
\[T(z) = 2 \]
\[w(z) = T(S(R(z))) = T(S(e^{-\frac{\pi i}{3} z})) \]
\[= T(2e^{-\frac{\pi i}{3} z}) \]
\[= 2e^{-\frac{\pi i}{3} z} + 2 \]
\[= 2 \left(\frac{1 - i\sqrt{3}}{2} \right) z + 2 \]
\[= (1 - i\sqrt{3})z + 2 \]
HW Set 4

3.1.1. 2, 11, 17, 20*

2) \(\lim_{z \to 1+i} \frac{z - \bar{z}}{z + \bar{z}} = \lim_{(x,y) \to (1,1)} u(x,y) + iv(x,y) = 1 \)

\[\frac{z - \bar{z}}{z + \bar{z}} = \frac{(x+iy) - (x-iy)}{(x+iy) + (x-iy)} = \frac{2iy}{2x} = \frac{iy}{x} \Rightarrow \frac{v}{x} = \frac{y}{x} \]

11) \(\lim_{z \to e^{\frac{3\pi}{4}}} (z + \frac{1}{z}) = e^{\frac{3\pi}{4}} + \frac{1}{e^{\frac{3\pi}{4}}} = e^{\frac{3\pi}{4}} + e^{-\frac{3\pi}{4}} = 2 \cos \left(\frac{3\pi}{4} \right) = \sqrt{2} \)

17) \(\lim_{z \to 0} \frac{\Re (z)}{\Im (z)} = \lim_{(x,y) \to (0,0)} \frac{x}{y} \frac{4}{5} \)

(a) If \(z \to 0 \) along \(y = x \), \(\lim_{z \to 0} \frac{\Re (z)}{\Im (z)} = \lim_{(x,y) \to (0,0)} 1 = 1 \)

(b) If \(z \to 0 \) along imaginary axis \(y = 0 \), \(\lim_{z \to 0} \frac{\Re (z)}{\Im (z)} = \lim_{(x,y) \to (0,0)} 0 = 0 \)

(c) The limit does not exist!

20) \(\lim_{z \to 0} \left(\frac{2y^2 - x^2 - y^2 i}{x^2 - y^2 i} \right) \)

(a) Suppose \(y = x \)
\[\lim_{(x,y) \to (0,0)} 2 - 0i = 2 \]

(b) Suppose \(y = -x \)
\[\lim_{(x,y) \to (0,0)} 2 - 0i = 2 \]

(c) Answers imply that limit exists since we get same answer along both paths

(d) Suppose \(y = 2x \)
\[\lim_{(x,y) \to (0,0)} 2(2x^2 - x^2 - 2xi) \]
\[= \lim_{(x,y) \to (0,0)} -3i = 8 + 3i \frac{1}{4} \]

(e) Limit does not exist!
28. \(f(z) = \frac{z^3 - \frac{1}{z}}{z} \quad z_0 = 3i \)

\[
\lim_{z \to 3i} f(z) = (3i)^3 - \frac{1}{3i} = -27i - \frac{1}{3}(-i) = -80i
\]

31. \(f(z) = \begin{cases}
\frac{z^3}{z-1}, & |z| \neq 1 \\
\frac{z^3}{3}, & |z| = 1
\end{cases} \)

\[
\lim_{z \to 1} \frac{(z-1)(z^2+1)}{(z-1)} = \lim_{z \to 1} z^2 + 1 = 2
\]

37. \(\lim_{z \to -1} \arg z = \text{DNE} \)

\[
\lim_{z \to -1} \arg z = \pi \quad \text{when } z \to -1 \text{ from above}
\]

\[
\lim_{z \to -1} \arg z = -\pi \quad \text{when } z \to -1 \text{ from below}
\]

50. \(\lim_{z \to z_0} \bar{z} = \bar{z}_0 \) if for every \(\epsilon > 0 \), there is a \(\delta > 0 \) such that \(|\bar{z} - \bar{z}_0| < \epsilon \) whenever \(0 < |z - z_0| < \delta \).

By properties of complex modulus and conjugation, \(|z - z_0| = |\bar{z} - \bar{z}_0| = |\bar{z} - \bar{z}_0| \). Therefore, if \(0 < |z - z_0| < \delta \) and \(\delta = \epsilon \), then \(|\bar{z} - \bar{z}_0| < \epsilon \).