Complex Analysis

Math 312 Fall 2001 ©**Buckmire**

M 5-6:25, R 1:30-2:55 Fowler 112, Fowler 201

TEST 1: Friday October 19, 2001

Directions: Read *all* 4 problems first before answering any. You may choose to answer **question 3 or question 4.** You may have access to any notes or the textbook. This is a one hour test. You have 90 minutes to complete it.

No.	Score	Maximum
1		40
2		30
3 or 4		30
Total		100

- 1. [40 pts. total] Mapping. We want to find the general form of the function M(z) = Az + B which maps one circle, the set of points \mathbf{P} : $|z z_0| = r$, to another circle located somewhere else, the set of points \mathbf{Q} : $|w w_0| = \rho$ in the complex plane.
- (a) [5 pts] Find a mapping of the form $f_1(z) = \alpha z$ which maps **P** so that it has the same radius as **Q**.

(b) [5 pts] Find a mapping of the form $f_2(z) = z + \beta$ which maps **P** so that its center is at the same location as **Q**.

(c) [10 pts] Will $f_2(f_1(z)) = F(z)$ be the mapping which maps **P** to **Q**? In other words, what is the image of **P** under F(z)?

(d) [10 pts] Find an example of a mapping M(z) = Az + B where A and B depend on the parameters r, ρ , z_0 and w_0 which maps **P** to **Q**.

(e) [10 pts] Use your answers above to find the function M(z) which maps |z - 2 - i| = 1 to |w + 2 + 3i| = 2.

2. [30 pts.] Arithmetic of Complex Numbers. (a) [10 pts] What condition on a and b must be met for (a + bi)² = ci where a, b and c are all real numbers? Where in the complex plane would (a, b) have to be for c to be negative?

(b) [10 pts] Use your answer in part (a) to help you evaluate $\sqrt{8i}$.

(c) [10 pts] Use your answers above to find all the solutions of $z^2 + 2iz + 8i - 1 = 0$.

- **3.** [30 pts. total] Cauchy-Riemann Equations, Harmonic Functions. Consider the function $f = u(x, y) + iv(x, y) = x^2 + y^2 + 2xyi$
- (a) [10 pts] Show that the set of points for which f'(z) exists all lie on the x-axis.

(b) [10 pts] Using your information from (a), on what set of points is f(z) analytic? Explain your answer.

(c) [10 pts] Show that v(x, y) is harmonic. Is the given u(x, y) its harmonic conjugate? If not, find the harmonic conjugate of v(x, y)

4. [30 pts. total] Analyticity, Differentiability.

The **Jacobian** of a mapping u = u(x, y), v = v(x, y) from the *xy*-plane to the *uv*-plane is defined to be the determinant

$$J(x_0, y_0) = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix},$$

where the partial derivatives u_x , u_y , v_x , v_y are all evaluated at (x_0, y_0) .

(a) [10 pts] If f = u + iv is analytic on a neighborhood containing $z_0 = x_0 + iy_0$ show that $J(x_0, y_0) = |f'(z_0)|^2$.

(b) [20 pts] For the function f(z) = Az + B find J(0,0) two different ways (i.e. from the definition and from the result given in part (a).