Complex Analysis

Math 312 Fall 2001
M 5-6:25, R 1:30-2:55
(C)Buckmire

TEST 1: Friday October 19, 2001

Directions: Read all 4 problems first before answering any. You may choose to answer question 3 or question 4. You may have access to any notes or the textbook. This is a one hour test. You have 90 minutes to complete it.

No.	Score	Maximum
1		40
2		30
3 or 4		30
Total		100

1. [40 pts. total] Mapping. We want to find the general form of the function $M(z)=A z+B$ which maps one circle, the set of points $\mathbf{P}:\left|z-z_{0}\right|=r$, to another circle located somewhere else, the set of points $\mathbf{Q}:\left|w-w_{0}\right|=\rho$ in the complex plane.
(a) $\left[5\right.$ pts] Find a mapping of the form $f_{1}(z)=\alpha z$ which maps \mathbf{P} so that it has the same radius as \mathbf{Q}.
(b) [5 pts] Find a mapping of the form $f_{2}(z)=z+\beta$ which maps \mathbf{P} so that its center is at the same location as \mathbf{Q}.
(c) [10 pts] Will $f_{2}\left(f_{1}(z)\right)=F(z)$ be the mapping which maps \mathbf{P} to \mathbf{Q} ? In other words, what is the image of \mathbf{P} under $F(z)$?
(d) $[10 \mathrm{pts}]$ Find an example of a mapping $M(z)=A z+B$ where A and B depend on the parameters r, ρ, z_{0} and w_{0} which maps \mathbf{P} to \mathbf{Q}.
(e) [10 pts] Use your answers above to find the function $M(z)$ which maps $|z-2-i|=1$ to $|w+2+3 i|=2$.
2. [30 pts.] Arithmetic of Complex Numbers. (a) [10 pts] What condition on a and b must be met for $(a+b i)^{2}=c i$ where a, b and c are all real numbers? Where in the complex plane would (a, b) have to be for c to be negative?
(b) $[10 \mathrm{pts}]$ Use your answer in part (a) to help you evaluate $\sqrt{8 i}$.
(c) $[10 \mathrm{pts}]$ Use your answers above to find all the solutions of $z^{2}+2 i z+8 i-1=0$.
3. [30 pts. total] Cauchy-Riemann Equations, Harmonic Functions. Consider the function $f=u(x, y)+i v(x, y)=x^{2}+y^{2}+2 x y i$
(a) [10 pts] Show that the set of points for which $f^{\prime}(z)$ exists all lie on the x-axis.
(b) [10 pts] Using your information from (a), on what set of points is $f(z)$ analytic? Explain your answer.
(c) [10 pts] Show that $v(x, y)$ is harmonic. Is the given $u(x, y)$ its harmonic conjugate? If not, find the harmonic conjugate of $v(x, y)$
4. [30 pts. total] Analyticity, Differentiability.

The Jacobian of a mapping $u=u(x, y), v=v(x, y)$ from the $x y$-plane to the $u v$-plane is defined to be the determinant

$$
J\left(x_{0}, y_{0}\right)=\left|\begin{array}{cc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|
$$

where the partial derivatives $u_{x}, u_{y}, v_{x}, v_{y}$ are all evaluated at $\left(x_{0}, y_{0}\right)$.
(a) [10 pts] If $f=u+i v$ is analytic on a neighborhood containing $z_{0}=x_{0}+i y_{0}$ show that $J\left(x_{0}, y_{0}\right)=\left|f^{\prime}\left(z_{0}\right)\right|^{2}$.
(b) [20 pts] For the function $f(z)=A z+B$ find $J(0,0)$ two different ways (i.e. from the definition and from the result given in part (a).

