Complex Analysis

Math 214 Spring 2014
(C) 2014 Ron Buckmire

Fowler 307 MWF 3:00pm - 3:55pm
http://faculty.oxy.edu/ron/math/312/14/

Class 28: Wednesday April 16

TITLE Introduction to Linear Fractional Transformations
CURRENT READING Saff \& Snider, $\S 7.2$
HOMEWORK Saff \& Snider, §7.2 14, 15, 21, 27*.

SUMMARY

We shall follow up on some odds and ends (Cauchy's Second Residue Theorem and Jordan's Lemma) and begin our in-depth look at the most useful mapping, the linear fractional transformation (LFT).

Cauchy's Second Residue Theorem

If a function $f(z)$ is analytic everywhere in the finite plane except for a finite number of singular points interior to a positively oriented simple closed contour C, then

$$
\oint f(z) d z=2 \pi i \boldsymbol{\operatorname { R e s }}\left[\frac{1}{z^{2}} f\left(\frac{1}{z}\right) ; \mathbf{0}\right]
$$

In other words, instead of finding the residues of all the singularities of the given function $f(z)$ which lie inside the given contour C, all you need to do is find the residue at a single point, $z=0$, of the associated function $\frac{1}{z^{2}} f\left(\frac{1}{z}\right)$. Note what's really going on involves finding the residue of the function at the point at infinity.

EXAMPLE

Evaluate $\oint_{|z|=2 \pi} \tan (z) d z$ using Cauchy's Second Residue Theorem.

Evaluate $\oint_{|z|=2} \frac{e^{1 / z}}{z-1} d z$ using Cauchy's Second Residue Theorem.

Exercise

Evaluate $\oint_{|z|=2} \frac{3 z+2}{z^{2}+1} d z$ using Cauchy's Second Residue Theorem. (Confirm your answer by using Cauchy's (First) Residue Theorem.)

Recall The Properties of the Inversion Mapping

The mapping $w=1 / z$ maps the extended complex plane to itself on a one-to-one basis.
The mapping $w=\frac{1}{z}$ transforms circles and lines into circles and lines
Lines passing thru the origin $\quad \longmapsto \quad$ Lines passing thru the origin
Lines NOT passing thru the origin $\longmapsto \quad$ Circles passing thru the origin
Circles passing thru the origin $\longmapsto \quad$ Lines NOT passing thru the origin
Circles NOT passing thru the origin \longmapsto Circles NOT passing thru the origin

Bilinear Transformations

Consider transformations of the form

$$
w=f(z)=\frac{a z+b}{c z+d} \quad \text { where } a d-b c \neq 0
$$

They are also known as linear fractional transformations or Möbius transformations. It's easy to see that you can re-write this to produce an expression of the form

$$
A z w+B z+C w+D=0
$$

where A, B, C and D can be expressed in terms of a, b, c and d.

Bilinear Transformation as composite mapping

Notice that if $c=0$ then our bilinear transformation (linear in z and w) becomes just a linear transformation in z.
If $c \neq 0$ then we can re-write $w=f(z)$ as

$$
w=\frac{a}{c}+\frac{b c-a d}{c} \frac{1}{c z+d}
$$

To show this, all we have to do is remember polynomial division:

If we look at the linear fractional transformation this way, we can see that it can be written as a composition of two linear transformations and an inverse mapping.

$$
w=c z+d, \quad w_{1}=\frac{1}{w}, \quad w_{2}=\frac{a}{c}+\frac{b c-a d}{c} w_{1}
$$

Find the composition of these three mappings above, so that $w_{2}=T(z)$, and by so doing, show that T is a "LFT."
Thus LFTs can be thought of as a \qquad followed by a
followed by a \qquad
Therefore, we know that LFT's map circles and lines to \qquad and

Properties of Linear Fractional Transformations

Let f be a Möbius transformation. Then

- f can be expressed as the composition of a finite number of rotations, translations, magnifications and inversions
- f maps the extended complex-plane to itself
- f maps the class of circles and lines to circles and lines
- f is conformal (i.e. $f^{\prime}(z) \neq 0$) at every point besides its pole

Poles and Fixed Points

A pole (regular singularity) of a function is a point z_{0} where $\lim _{z \rightarrow z_{0}} f(z)=\infty$
A fixed point of a function $f(z)$ is a point z_{0} such that $f\left(z_{0}\right)=z_{0}$. That is, a fixed point in the z-plane gets mapped to the same spot in the w-plane.

Find the poles of $T(z)=\frac{a z+b}{c z+d}$. How many poles does it have? How many fixed points does it have? (These answers should depend on a, b, c and d.)

If a line or circle passes thru the pole of T then it must be mapped to a shape that goes thru the point at infinity. Why? What kind of shape would do that?

So, if a line or circle does NOT pass thru the pole of T it must get mapped to what kind of shape?

Where does T map the point at infinity?

THEOREM: Circle-Preserving Properts of LFTs

If C is a circle in the z-plane and if $w=T(z)=\frac{a z+b}{c z+d}$ is an LFT, then the image of C under T is either a circle or a line in the extended complex w-plane. The image is a line if and only if $c \neq 0$ and the pole of $T, z=-d / c$ is on the circle C.

Question Does the function $w=\frac{2 z-1}{i z+1}$ map the circle $|z-i|=1$ to a circle or a line? Answer \qquad

Inverses of LFTs

Since T is a one-to-one mapping on the extended complex plane, it has an inverse. If you solve $w=T(z)$ so that $z=T^{-1}(w)$, then

$$
T^{-1}(w)=\frac{-d w+b}{c w-a}, \quad(a d-b c \neq 0)
$$

Note that T^{-1} is also an LFT. So, the inverse of an LFT is another LFT. But, wait, there's more! In general, if S and T are two LFTs, then $S(T(z))$ is also an LFT, i.e. the composition of two LFTs is also an LFT.

Find the image of the interior of the circle $C:|z-2|=2$ under the LFT given by $w=f(z)=\frac{z}{2 z-8}$ Sketch the image and pre-image of C under $w=f(z)$

Exercise

Show that the image of the unit disk $|z| \leq 1$ under the mapping $w=i \frac{z-1}{z+1}$ is the set $\{w \in \mathbb{C}: \operatorname{Im}(w) \leq 0\}$

