Complex Analysis

Math 214 Spring 2014
(C) 2014 Ron Buckmire

Fowler 307 MWF 3:00pm - 3:55pm
http://faculty.oxy.edu/ron/math/312/14/

Class 23: Monday March 31

TITLE Poles, Zeroes and Residues
CURRENT READING Zill \& Shanahan, §6.4-6.5
HOMEWORK Zill \& Shanahan, $\S 6.4$ 2,6,21. §6.5 2,12,17,23.

SUMMARY

We shall be introduced to the concept of residues, and we shall learn about Cauchy's Residue Theorem.

Zeroes and Poles

So, far we have had a lot of experience finding the poles of a function and this was important in evaluating contour integrals. The problem of finding a pole is equivalent to finding the zero of a related function. Let's formalize these definitions:

DEFINITION: Zero

A point z_{0} is called a zero of order m for the function $f(z)$ if f is analytic at z_{0} and f and its first $m-1$ derivatives vanish at z_{0}, but $f^{(m)}\left(z_{0}\right) \neq 0$.

DEFINITION: Pole

A point z_{0} is called a pole of order m of $f(z)$ if $1 / f$ has a zero of order m at z_{0}.

Identifying Poles and Zeroes

Let f be analytic. Then f has a zero of order m at z_{0} if and only if $f(z)$ can be written as $f(z)=g(z)\left(z-z_{0}\right)^{m}$ where g is analytic at z_{0} and $g\left(z_{0}\right) \neq 0$.

If $f(z)$ can be written as $f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{m}}$ where $g(z)$ is analytic at z_{0}, then f has a pole of order m at $z=z_{0}$ and $g\left(z_{0}\right) \neq 0$

How do we find the poles of a function? Well, if we have a quotient function $f(z)=p(z) / q(z)$ where $p(z)$ are analytic at z_{0} and $p\left(z_{0}\right) \neq 0$ then $f(z)$ has a pole of order m if and only if $q(z)$ has a zero of order m. EXAMPLE We will classify all the singularities of $f(z)=\frac{3 z+2}{z^{4}+z^{2}}$. How many singularities does $f(z)$ have? And of what order?

GROUPWORK

Let's try and classify all the singularities of the following functions:
(a) $A(z)=\frac{4}{z^{2}(z-1)^{3}}$
(b) $B(z)=\frac{\sin z}{z^{2}-4}$
(c) $C(z)=\tan z$
(d) $D(z)=\frac{z}{z^{2}-6 z+10}$

Residues

Once we know all the singularities of a function it is useful to compute the residues of that function. If a function $f(z)$ has a pole of order m at z_{0}, the residue, denoted by $\operatorname{Res}\left(f ; z_{0}\right)$ or $\operatorname{Res}\left(z_{0}\right)$ is given by the formula below:

$$
\operatorname{Res}\left(f ; z_{0}\right)=\lim _{z \rightarrow z_{0}}\left\{\frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]\right\}
$$

EXAMPLE
Let's find the residues of the singularities of $f(z)=\frac{3 z+2}{z^{4}+z^{2}}$.

Exercise

Find the residues of all the singularities we previously classified for the following functions. What is z_{0} and m in each case?
(a) $A(z)=\frac{4}{z^{2}(z-1)^{3}}$
(b) $B(z)=\frac{\sin z}{z^{2}-4}$
(c) $C(z)=\tan z$
(d) $D(z)=\frac{z}{z^{2}-6 z+10}$

Cauchy's Residue Theorem

If f is analytic on a simple (positively oriented) closed contour Γ and everywhere inside Γ except the finite number of points $z_{1}, z_{2}, \cdots z_{n}$ inside Γ, then

$$
\oint_{\Gamma} f(z) d z=2 \pi i \sum_{k=1}^{n} \boldsymbol{\operatorname { R e s }}\left(f ; z_{k}\right)
$$

EXAMPLE

Let's use the CRT to evaluate the following $\oint_{|z|=2} \frac{3 z+2}{z^{2}\left(z^{2}+1\right)} d z$
sc GroupWork
Use Cauchy's Residue Theorem (CRT) to evaluate the following integrals:
(a) $\oint_{|z|=5} \frac{4}{z^{2}(z-1)^{3}} d z$
(b) $\oint_{|z|=5 \pi} \frac{\sin z}{z^{2}-4} d z$
(c) $\oint_{|z|=2 \pi} \tan z d z$
(d) $\oint_{|z|=8} \frac{z}{z^{2}-6 z+10} d z$

