Complex Analysis

Math 214 Spring 2014
(C) 2014 Ron Buckmire

Fowler 307 MWF 3:00pm - 3:55pm
http://faculty.oxy.edu/ron/math/312/14/

Class 18: Wednesday March 19

TITLE Introduction to Contour Integration
CURRENT READING Zill \& Shanahan, §5.1 and §5.2;
HOMEWORK Zill \& Shanahan, §5.1 \#6, 7, 8, 11, 27 20,33*; §5.2 \# 2, 7, 10, 21, 22,29*

SUMMARY

We shall begin to consider integration of a compex function of a complex variable and do our very first contour integrals!

Exercise

First, let's recall how to integrate complex functions of a real variable. Compute the following:
(a) $\int_{1}^{2} \frac{-i}{t^{2}}+(t+2 i)^{3} d t$
(b) $\int_{0}^{\infty} e^{-z^{2} t} d t$

Contour Integration

Integration of a complex function of a complex variable is performed on a set of connected points from, say, z_{1} to z_{2}. It is a contour integral. Given a contour C defined as $z(t)$ for $a \leq t \leq b$ where $z_{1}=z(a)$ and $z_{2}=z(b)$, an integral of a complex function of a complex variable $f(z)$ is written as

$$
\int_{C} f(z) d z \quad \text { or } \quad \int_{z_{1}}^{z_{2}} f(z) d z
$$

Let $f(z)$ be piecewise continuous on $z(t)$. If C is a contour then $z^{\prime}(t)$ is piecewise continuous on $a \leq t \leq b$ and we can redefine the integral of $f(z)$ along C as:

$$
\int_{C} f(z) d z=\int_{a}^{b} f[z(t)] z^{\prime}(t) d t
$$

EXAMPLE
Compute $\int_{C} \operatorname{Im} z d z$ where C is a directed line segment from $z=2$ to $z=2 i$

Algorithm for Evlauting Contour Integrals

(The steps to be taken to complete the process of contour integration)
1: Write down a parametrization for the contour, $z(t)$
2: Convert the integral into an integral in (real) t variables by finding an expression for the integrand: $f(z(t)) z^{\prime}(t)$
3: Integrate!

Properties of Contour Integrals

(i.e. Integrals of Complex Functions of a Complex Variable) Suppose the function f and g are continuous complex functions of a complex variable in a domain D and C is a (piecewise) smooth curve lying entire in D, then

$$
\begin{aligned}
& \text { i. } \int_{C} k f(z) d z=k \int_{C} f(z) d z \quad \text { where } k \in \mathbb{C} \\
& \text { ii. } \int_{C}[f(z)+g(z)] d z=\int_{C} f(z) d z+\int_{C} g(z) d z \\
& \text { iii. } \int_{C} f(z) d z=\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z \text { where } C \text { could be formed from joining } C_{1} \text { and } \\
& C_{2} \text { end to end. }
\end{aligned}
$$

$$
\text { iv. } \int_{-C} f(z) d z=-\int_{C} f(z) d z \text { where }-C \text { has the opposite orientation of } C
$$

The textbook Zill \& Shanahan refers to these properties as Theoerem 5.2.2 (page 214).

THEOREM: Bounding Theorem

If f is a function of a complex variable that is continuous along a smooth curve C and if $|f(z)| \leq M$ for all z on C then

$$
\left|\int_{C} f(z) d x\right| \leq M L
$$

where L is the length of C.

Evaluation of Contour Integrals

Given $f(z)=u(x, y)+i v(x, y)$, we can write

$$
\int_{C} f(z) d z=\int_{C}[u+i v][d x+i d y]=\int_{C} u d x-v d y+i \int_{C} v d x+u d y
$$

In other words, every complex contour integration can really be thought of as two line integrals in real variables involving the functions $u(x, y)$ and $v(x, y)$.

Exercise

Compute $\int_{C} \operatorname{Im} z d z$ where C is a contour consisting of the circular arc from $z=2$ to $z=2 i$

GroupWork

Compute $\int_{C} 2 \bar{z}^{2} d z$ where C is a directed line segment from $z=2$ to $z=-2$. (Sketch the contour and evaluate the integral.)

Also evaluate $\int_{C} 2 \bar{z}^{2} d z$, this time using C being a counterclockwise circular arc from $z=2$ to $z=-2$. (Sketch the contour and then evaluate the integral.)

Also evaluate $\int_{C} 2 \bar{z}^{2} d z$, this time using C being a clockwise circular arc from $z=2$ to $z=-2$. (Sketch the contour and then evaluate the integral.)

Discussion Question
Does the value of your contour integral depend on the contour (i.e. the path taken from $(2,0)$ to $(-2,0)$?

EXAMPLE
Show that

$$
\oint_{C_{r}}\left(z-z_{0}\right)^{n} d z=\left\{\begin{array}{cc}
2 \pi i & n=-1 \\
0 & n \neq-1
\end{array}\right.
$$

where n is any integer and C_{r} is a circle of radius r around z_{0} (what is the equation of such a shape?) traversed once in the counter-clockwise direction. How will our results change if we reverse the direction of travel along the contour (i.e. move in a clockwise direction)?

Exercise

Evaluate $\oint_{|z|=1} \frac{1}{z} d z$ where the contour is traversed once in a clockwise direction.

