Complex Analysis

Math 214 Spring 2014
(C) 2014 Ron Buckmire

Fowler 307 MWF 3:00pm - 3:55pm
http://faculty.oxy.edu/ron/math/312/14/

Class 7: Wednesday February 5

TITLE Graphical Interpretation of Complex Linear Functions
CURRENT READING Zill \& Shanahan, Section 2.3
HOMEWORK Zill \& Shanahan, $\S 2.3$ 9, 18, 19, 34, 29*.

SUMMARY

We shall focus on the graphical interpretations of the mapping $f(z)=a z+b$. We generally can decompose linear complex mappings into 3 dominant characteristics or components. That is, mappings can be described as some combination of rotation, translation and magnification.
Complex Linear Function as Mapping
The complex linear function $f(z)=a z+b$ can be written as

$$
w=f(z)=a z+b=|a|\left(\frac{a}{|a|} z\right)+b
$$

which is the composition of the mappings, $f_{1}(z)=\left(\frac{a}{|a|}\right) z, f_{2}(z)=|a| z$ and $f_{1}(z)=z+b$.

EXAMPLE 1

We can show that $f(z)=a z+b=f_{1}\left(f_{2}\left(f_{3}(z)\right)\right)=\left(f_{3} \circ\left(f_{2} \circ f_{1}\right)\right)(z)$

So, in order, the linear mapping is a \qquad followed by a \qquad followed by a \qquad _.

Rotation

Consider $R(z)=i z$. How does this function represent a rotation mapping?
(Consider its effect on the set of points $\operatorname{Im} z=0$.)

Scaling

Consider $S(z)=2 z$. How does this function represent a scaling mapping?
(Consider the effect of S on the set of points $|z|=1$.)

Translation

Consider $T(z)=z-i$. How does this function represent a translation mapping? (Consider the effect of T on the set of points $|z|=1$.)

Reflection

Consider $f(z)=\bar{z}$. How does this function represent a reflection mapping? (Consider the effect of f on the set of points $\operatorname{Im} z=2$.)

