Complex Analysis

Math 214 Spring 2014 ©2014 Ron Buckmire Fowler 307 MWF 3:00pm - 3:55pm http://faculty.oxy.edu/ron/math/312/14/

Class 7: Wednesday February 5

TITLE Graphical Interpretation of Complex Linear Functions CURRENT READING Zill & Shanahan, Section 2.3 HOMEWORK Zill & Shanahan, §2.3 9, 18, 19, 34, 29*.

SUMMARY

We shall focus on the graphical interpretations of the mapping f(z) = az + b. We generally can decompose linear complex mappings into 3 dominant characteristics or components. That is, mappings can be described as some combination of **rotation**, **translation** and **magnification**.

Complex Linear Function as Mapping

The complex linear function f(z) = az + b can be written as

$$w = f(z) = az + b = |a| \left(\frac{a}{|a|}z\right) + b$$

which is the composition of the mappings, $f_1(z) = \left(\frac{a}{|a|}\right)z$, $f_2(z) = |a|z$ and $f_1(z) = z + b$.

EXAMPLE 1 We can show that $f(z) = az + b = f_1(f_2(f_3(z))) = (f_3 \circ (f_2 \circ f_1))(z)$

So, in order, the linear mapping is a	followed by a	
followed by a		

Rotation

Consider R(z) = iz. How does this function represent a rotation mapping? (Consider its effect on the set of points Im z = 0.)

Scaling

Consider S(z) = 2z. How does this function represent a scaling mapping? (Consider the effect of S on the set of points |z| = 1.)

Translation

Consider T(z) = z - i. How does this function represent a translation mapping? (Consider the effect of T on the set of points |z| = 1.)

Reflection

Consider $f(z) = \overline{z}$. How does this function represent a reflection mapping? (Consider the effect of f on the set of points Im z = 2.)

