Complex Analysis

Math 214 Spring 2014
(C) 2014 Ron Buckmire

Fowler 307 MWF 3:00pm - 3:55pm
http://faculty.oxy.edu/ron/math/312/14/

Class 2: Friday January 24

TITLE Graphical Representations of Complex Numbers and Inequalities
READING Zill \& Shanahan, Section 1.2
HOMEWORK Zill \& Shanahan, Section 1.2 \# 2, 5, 20, 29, 33, Extra Credit: 38

SUMMARY

We shall be introduced to the graphical (geometrical) representation of complex numbers, particularly the Argand diagram.

Consider two complex numbers $z_{1}=3+0.5 i$ and $z_{2}=-1-2 i$
Draw an Argand diagram depicting these two complex numbers in the complex plane (on the grid provided). What physical quantity do $\left|z_{1}\right|$ and $\left|z_{2}\right|$ represent in the diagram?

Then draw in vectors that represent the complex numbers $z_{1}+z_{2}$ and $z_{1}-z_{2}$ Indicate what the value of $\left|z_{1}+z_{2}\right|$ is. If I had two points at $(3,0.5)$ and $(-1,-2)$ what would the distance between these two points be?

GROUPWORK

Consider the equation $|z-2+i|=2$.
What curve does this equation represent in the complex plane?

Consider the equation $2=\operatorname{Re}(\bar{z}-i)$
What curve does this equation represent in the complex plane? How about $\operatorname{Im}(\bar{z}-i)=2$?

Sketch the set of points which satisfy each of these equations on the grid provided (on the next page)

Complex Inequalities

There are a number of interesting inequalities that one can prove using complex variables which have significance in other arenas.
The most famous of these is the Triangle Inequality
Triangle Inequality

$$
\begin{equation*}
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \tag{1}
\end{equation*}
$$

Can you express a geometric or vector interpretation of the Triangle Inequality?

This expression (1) is also true in a more general form known as the Cauchy-Schwarz Inequality
Cauchy-Schwarz Inequality

$$
\begin{aligned}
\left|z_{1}+z_{2}+z_{3}+\ldots+z_{n}\right| & \leq\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|+\ldots+\left|z_{n}\right| \\
\left|\sum_{k=1}^{n} z_{k}\right| & \leq \sum_{k=1}^{n}\left|z_{k}\right|
\end{aligned}
$$

The Cauchy-Schwarz Inequality can be proved by mathematical induction. PROOF

Some Other Inequalities

For the inequalities below, try to come up with a geometric interpretation and prove that they are true.

$$
\begin{gather*}
\operatorname{Re} z \leq|\operatorname{Re} z| \leq|z| \text { and } \operatorname{Im} z \leq|\operatorname{Im} z| \leq|z| \\
\left|z_{1}+z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \tag{2}\\
\left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \tag{3}\\
\left|z_{1}-z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \tag{4}
\end{gather*}
$$

Exercise

Inequalities (2), (3) and (4) are found on page 12 of Zill \& Shanahan. Pick one of them and try and to prove it is true.

EXAMPLE
Show that an upper bound for $\left|\frac{-1}{z^{4}+3 z^{2}+2}\right|$ when $|z|=2$ is $\frac{1}{6}$.

