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After learning about complex functions and simple mappings, we decided to further

explore visual representations of complex functions. After experimenting with several

types of visuals, we thought it best to split the functions up into four separate graphs

and use color to represent the values of the graphs. We chose to split the function

representations up into four graphs in order to analyze the real, imaginary, modulus, and

arguments of the functions separately. To show different types of imaginary functions,

we selected four functions, z, 2z + z, z2, and 1
z
. In particular, we took note of how the

compared to one another. In other words, f(z) is our basic function, and we saw how

scaling, translations, quadratics, and inverses changed the different parts of z.

We started with a very basic complex function, f(z) = z. The real part of the graph is

represented by an infinite number of vertical lines, which is reasonable because at every

value of x (real number), there will be an infinite amount of y (imaginary) values. The

colors we chose are in the ROYGBIV spectrum since most people are aware of the order

in which these colors are arranged. The violet and indigo colors are then the smallest

values, where as the red and orange are the areas of largest values. In this particular

graph, we see that the as x becomes more negative, the spectrum becomes more cool

colored and as x increases, the colors range from orange to red.

The next graph f(z) = Im(z), is similar to the real part of z except that the graph is

composed of horizontal lines rather than vertical ones. The lines are horizontal because

for every y value there exists an infinite number of x values. We also see a similar pattern

with the colors, as y goes from positive to negative, the spectrum goes from warm to

cool colors.
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Figure 1. Real graph of f(z) = z

Figure 2. Imaginary graph of f(z) = z

Our third graph illustrates the modulus of f(z) = z. Simply put, modulus is repre-

sented by the formula: |x+ iy| =
√
x2 + y2. Our graph shows that as x and y increase,

so do the values of the modulus, which agrees with our intuition that as z increases, so

should the modulus.

Our final graph for f(z) = z, demonstrates the argument of z. In order to analyze the

argument, we start at the real axis and follow a clockwise direction. As the argument

reaches 2π, the colors should become warmer (increase). We do see in the graph that as

the two axises become more positive, the argument is red.

Next we show what happens when we scale and shift z by a values of 2. Thus our

function for the following graphs is f(z) = 2z+ 2. Looking at the representations of the
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Figure 3. Modulus graph of f(z) = z

Figure 4. Argument graph of f(z) = z

real and imaginary parts of the function f(z) = 2z+ 2, we see no change since the there

is still and infinite amount of y values for every x value and vice-versa.

Figure 5. Real and imaginary graphs of f(z) = 2z + 2
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There is a noticeable change however within the modulus of our function. We see that

the center is no longer at the origin, rather it has been shifted to the left by two units.

The same is for the graph of the argument. This is because we shifted our graph by two

units. We also see that the center is larger (the blue are is has grown to twice the size

as the z mod graph) since we scaled the graph by a factor of two. In the argument we

also see a similar change in that it takes twice as long for the graph to change colors as

x and y increase.

Figure 6. Modulus and argument graphs of f(z) = 2z + 2

Thirdly, we experimented with the function f(z) = z2. The graph for the real part

of f(z) = z2 is significantly different from both of our previous graphs. We can see the

the middle of the graph is much smaller the the edges (as x heads towards ∞ or −∞).

This makes sense since we know that z2 will behave much like x2 does in the real plane.

Hence z2 will grow larger faster as x heads towards ∞ or −∞. The same explanation

holds true for the imaginary graph of z2.

The modulus graph of z2 is similar to the real and imaginary graphs, in other words

the function starts off small then increases rapidly. Again, this graph behaves like the

function x2 in the xyz-plane since they both look like bowls.

The argument graph is distinct from the previous functions’ argument graphs in that

this is the first time we see warm colors above and below the x-axis. This can be
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Figure 7. Real and imaginary graphs of f(z) = z2

Figure 8. Modulus graph of f(z) = z2

explained by the fact that positive and negative can have large arguments due to the

properties of a quadratic function.

Figure 9. Argument graph of f(z) = z2
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Finally, we decided to look at the function f(z) = 1
z
. The most significant difference

in all of these graphs is that they have sections of white at z = 0. This is obvious

since 1
z

is undefined at z = 0. It is also important to note that as the z values increase,

the function decreases since the limit as z approaches ∞ is 0. Besides the undefined

areas, the real, imaginary, and modulus graphs for f(z) = 1
z

behave more or less like

the previous functions. Although the real, imaginary, and modulus graphs behaved as

expected, the argument graph does not match our expectations. As you can see, the

sections that is undefined is not the line Im(z) = 0. We can only conclude that this is a

numerical error due to the program we used. When trying to fix this error we noticed

that the undefined area remained between Im(z) = ±0.2. Thus we decided that in the

overall picture, this error was negligible and our representations are accurate.

Figure 10. Real, imaginary, modulus, and argument graphs of f(z) = 1
z

Ultimately, our graphs gave us a deeper understanding of the behavior of complex

functions. Through our graphs, we saw the different behaviors of the real, imaginary,

modulus, and argument of different functions. In addition, they provided a new fun way

to visualize functions in the complex plane.

Note: We created all of the graphs on Wolfram’s Mathematica by manipulating the

following code:

Table[DensityPlot[f[(x + Iy)], x, -2, 2, y, -2, 2, ColorFunction − > ”DarkRainbow”,

ExclusionsStyle − > Red], f, Re, Im, Abs, Arg]


