Project for Math 312

Use Contour Integral and Residue Theorem to evaluate real integral

Jonathan Selub

In this project we will apply the powerful technique of Contour integral in the
complex plane to evaluate some improper integrals. These integrals are very difficult
to tackle with the regular calculus techniques of real variables. We are going to use
the integration along a branch cut, and the residue theorem, plus the proper choice
of contours, to solve interesting integrals such as
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It is quite surprising that by going to one extra dimension, we actually simplify the
problem and are able to overcome the seemingly intractable difficulties. This kind of
technique is widely used in science and engineering, and clearly shows the elegance
and power of complex analysis.
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I. Evaluation of [

To compute Integral fooo dx, we integrate the complex function
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D) along the contour show in figure 6.15 of section 6.6.

The contour consists of four components: C, and Ci are portions of circles, and
AB and ED are parallel horizontal line segments running along opposite sides of the
branch cut. The integrand f(z) of the contour integral is single valued and analytic on
and within C, except for the simple poles at z=-1 and z = -4. Therefore we can write

gﬁcm = 2mi(Res(f(z),—1) + Res(f(z), —4))

Or fCR+fED+fCr+fAB:Il+12+13+14



= 2mi(Res(f(z),—1) + Res(f(z), —4))

Along the branch cut, AB coincides with the upper side of the positive real axis for
which © = 0 and ED coincides with the lower side of the positive real axis for which 6
=21 On AB, = xe® , and on ED, z = xe?™, so that
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To evaluate /1, let z = Re'?, we see that
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Since the right hand side -> 0 as R — oo, we conclude that limg_,,, [; = 0.

To evaluate I3, let z = re'®, we have
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where M is the upper bound for the analytic function Again, we
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see thatrM — 0 asr — 0, so we can conclude that lim,_,, I5 = 0.

Put all these together, we see that
lim;;:%o fcR + [+ fCT + [, = 2mi(Res(f(2), —1) + Res(f(2), —4))
Is the same as

2 fooomdx = 27i(Res(f(2), —1) + Res(f(2), —4))



What’s remaining is to evaluate those 2 residues. Since they are both simple

poles, we have
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And we get
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Hence finally
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This is different from the stated value in problem 44 of section 6.6, which is %
But I’'ve double checked my calculation and am pretty confident that% is the correct

answer.

Further Discussion: to double check the value of this integral, | decided to use

. . . 1
technique of real variable calculus. Use substitution u = Vx, then du = ﬁdx , SO
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Which is exactly the same value we obtained from complex contour integral!



eax

A (0]
Il. Evaluation of f_oo T1o%

dx,0<a<1

eax

To compute Integral foo dx,0 < a < 1, we integrate the complex function
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f(z) = gﬁc i dz along the rectangular contour show in figure 6.18 of section 6.6:

The rectangular contour consists of four components: left and right vertical line
segments, plus top and bottom horizontal line segments. The integrand f(z) of the
contour integral is single valued and analytic on and within C, except for the simple
pole at z = mi. Therefore we can write
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Along the top line segment, z = x + 2mi, dz = dx, so
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Along the bottom line segment, z = x, dz = dx, so
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conclude that lim,_,, left = 0.

We can see that | fleftl <

Along the right line segment, z = r + iy, dz = idy, so
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Now put all these 4 line segments together, we arrive at
lim, pr + fleﬁ + fbotwm + fn.ght = 2miRes(f (z), i)

Which is the same as
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To compute the residue at z = mi, since it’s a simple pole, we can apply formula
(4) of section 6.5:
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So we have
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Which simplifies to
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And this is the result we desired.



