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Mapping Properties of the Complex Cosine Function 

In my opinion, the most fascinating part of complex analysis is the mapping 

effects of complex functions. However, we have only looked into relatively simple 

functions, so I decided to investigate the mapping properties of the complex cosine 

function. In particular, I looked at what effect the complex function 𝑤 = cos 𝑧  has on 

four specific curves: a vertical line, a horizontal line, the unit circle, and a ray at a certain 

angle to the x-axis. As a guideline for the following calculations, I followed the 

explanations of the complex sine function in the textbook and on a worksheet online and 

altered them as needed for the cosine function.  

To start out, I manipulated the basic formula for the complex cosine function, 

cos 𝑧 =    !
!
  (𝑒!" + 𝑒!!"), to find the real and imaginary parts of cos 𝑧  as follows: 

𝑢 = cos 𝑥 cosh  (𝑦) and 𝑣 =   − sin 𝑥 sinh  (𝑦) (see calculations).  

Looking specifically at a vertical line 𝑥 =   𝛼: by letting 𝑥 =   𝛼 and further 

manipulating the real and imaginary parts of the cosine function as given above, I 

obtained the equation !!

!"#!!
−    !!

!"#!!
= 1 (see calculations). This is the equation of a 

hyperbola in the complex plane, meaning the cosine functions maps vertical lines to 

hyperbolae.  

Looking at a horizontal line 𝑦 =   𝛽: by letting 𝑦 =   𝛽 and manipulating the real 

and imaginary parts of cos 𝑧 , I obtained the equation !!

!"#!!!
+    !!

!"#!!!
= 1 (see 



calculations). This is the equation of an ellipse in the complex plane, meaning the cosine 

function maps horizontal lines to ellipses.  

Looking at the unit circle, parameterized by 𝑧 𝑡 =   𝑒!" , 0 ≤ 𝑡 ≤ 2𝜋: By 

manipulating the original cos  (𝑧) function, I found that 

cos 𝑧(𝑡) = cos cos 𝑡 cosh 𝑠𝑖𝑛 𝑡 −   𝑖  (sin cos 𝑡 sinh  (sin 𝑡 ). By plotting this 

on Mathematica, I discovered that the unit circle is mapped to a different circle, which is 

not centered at the origin. Interestingly, if the radius of the original circle is increased, the 

circular mapping morphs into a shape more reminiscent of a polar graph. 

Looking at a ray at angle θ, parameterized by 𝑧 𝑡 =    𝑡𝑒!" ,−∞ < 𝑡 < ∞: By 

manipulating the original cos  (𝑧) function, I found that 

cos 𝑧(𝑡) = cos 𝑡 cos 𝜃 cosh 𝑡 𝑠𝑖𝑛 𝜃 −   𝑖  (sin tcos 𝜃 sinh  (tsin 𝜃 ). By plotting 

this on Mathematica, I saw that the ray is mapped to a strange curve which, as the 

original angle θ is changed, winds itself around the origin before compressing, flipping 

over the origin, and unwinding. To see this in action, refer to the Mathematica program 

included with this project, which allows you to vary the original angle of the ray and see 

what effect this has on the mapping of the ray by the complex cosine function.  

This program also includes graphs for the three previously discussed functions 

(vertical line, horizontal line, and unit circle). Note that there are two graphs for the unit 

circle: one is specifically for the unit circle, with the radius of the original circle fixed at 

one, and the other is for a circle in general, which allows you to change the radius of the 

original circle and see how the resulting mapping is transformed (as discussed above). 

The graphs of the vertical and horizontal lines also include a “manipulate” function so 

you can see how altering 𝛼 for 𝑥 =   𝛼 changes the hyperbola to which the vertical line is 



mapped or how altering 𝛽 for 𝑦 =   𝛽 changes the ellipse to which the horizontal line is 

mapped.  

Along with the discussed mapping properties of the cosine function, it should be 

noted that the cosine function is also an example of a conformal mapping. A conformal 

mapping is a mapping that preserves angles; in other words, when two angles intersecting 

at a certain angle in the z-plane are mapped to curves intersecting at the same angle in the 

w-plane, that mapping is said to be conformal. All complex functions that are analytic are 

conformal at the points where its derivative is not equal to zero (Zill and Shanahan, 335). 

Thus, since cosine is an analytic function, it is conformal at all points where its 

derivative, -sin(z), is not zero (everywhere except multiples of 𝜋). Similarly, sin(z) is an 

analytic complex function whose derivative, cos(z), is zero at odd multiples of !
!
, so 

sin(z) is conformal at all other points. This can be seen in the textbook’s Table of 

Conformal Mappings (which does not, unfortunately, include the complex cosine 

function).  

Although there is not a simple way to describe this mapping — like the inversion 

mapping, which sends lines to circles and circles to lines — it is interesting to see how 

simple curves are morphed by the complex cosine function to produce completely 

different curves in the complex plane. For example, it is fascinating that while horizontal 

and vertical lines are mapped to simple shapes like hyperbolae and ellipses, a straight line 

at an angle other than 90° is mapped to a curve which behaves in a very strange way. 

Complex function mappings are really remarkable concepts, and I hope to investigate 

them more in the future.  

  



Calculations: 

cos 𝑧 =   
1
2    𝑒

!" + 𝑒!!"  

𝑒!" =   𝑒!(!!!") =   𝑒!"!! = (cos 𝑥 +   𝑖 sin 𝑥 )  𝑒!! 
𝑒!!" =   𝑒!! !!!" =   𝑒!!"!! = (cos 𝑥 −   𝑖 sin 𝑥 )  𝑒! 

cos 𝑧 =   
1
2   (𝑒

!! cos 𝑥 + 𝑖  𝑒!! sin 𝑥 + 𝑒! cos 𝑥 −   𝑖𝑒! sin 𝑥 ) 

=
1
2    cos 𝑥 𝑒!! + 𝑒! + 𝑖 sin 𝑥 𝑒!! − 𝑒!  

= cos 𝑥
𝑒!! + 𝑒!

2 + 𝑖 sin 𝑥 (
𝑒!! − 𝑒!

2 ) 

cos 𝑥 cosh 𝑥 −   𝑖 sin 𝑥 sinh  (𝑥) 
𝑢 = cos 𝑥 cosh 𝑥  
𝑣 = − sin 𝑥 sinh  (𝑥) 

 
Vertical Line 𝒙 =   𝜶: 
 

𝑢 = cos 𝛼 cosh 𝑦                                                                                       𝑣 = − sin 𝛼 sinh 𝑦  
𝑢!   =    𝑐𝑜𝑠! 𝛼   𝑐𝑜𝑠ℎ! 𝑦                                                                     𝑣! =    𝑠𝑖𝑛! 𝛼 𝑠𝑖𝑛ℎ!(𝑦) 

𝑢!   =    𝑐𝑜𝑠!(𝛼)  (1+ 𝑠𝑖𝑛ℎ!(𝑦))                                                        𝑠𝑖𝑛ℎ! 𝑦 =   
𝑣!

𝑠𝑖𝑛!(𝛼)   

𝑢! =    𝑐𝑜𝑠!𝛼     1+
𝑣!

𝑠𝑖𝑛! 𝛼     

𝑢!

𝑐𝑜𝑠!𝛼 =     1+
𝑣!

𝑠𝑖𝑛! 𝛼    

1   =     
𝑢!

𝑐𝑜𝑠!𝛼 −
𝑣!

𝑠𝑖𝑛! 𝛼  

 
Horizontal Line 𝒚 =   𝜷 
 

𝑢 = cos 𝑥 cosh 𝛽                                                                                       𝑣 = − sin 𝑥 sinh 𝛽  
𝑢!   =    𝑐𝑜𝑠! 𝑥   𝑐𝑜𝑠ℎ! 𝛽                                                                     𝑣! =    𝑠𝑖𝑛! 𝑥 𝑠𝑖𝑛ℎ!(𝛽) 

𝑢!   =    (1− 𝑠𝑖𝑛!(𝑥))  𝑐𝑜𝑠ℎ!(𝛽)                                                          𝑠𝑖𝑛! 𝑥 =   
𝑣!

𝑠𝑖𝑛ℎ!(𝛽)   

𝑢! =    𝑐𝑜𝑠ℎ!𝛽     1−
𝑣!

𝑠𝑖𝑛ℎ! 𝛽     

𝑢!

𝑐𝑜𝑠ℎ!𝛽 =     1−
𝑣!

𝑠𝑖𝑛ℎ! 𝛽    

1   =     
𝑢!

𝑐𝑜𝑠ℎ!𝛽 +
𝑣!

𝑠𝑖𝑛ℎ! 𝛽  



Unit Circle: 𝒛 𝒕 =   𝒆𝒊𝒕  ,        𝟎 ≤ 𝒕 ≤ 𝟐𝝅 
 

𝑒!" ! =   𝑒! !!" =   𝑒!(!"# ! !! !"# ! ) =   𝑒! !"# ! !!"#  (!)

= cos cos 𝑡 + 𝑖 sin cos 𝑡   𝑒!!"#  (!) 
𝑒!!" ! =   𝑒!! !!" =   𝑒!!(!"# ! !! !"# ! ) =   𝑒!! !"# ! !!"#  (!)

= cos cos 𝑡 − 𝑖 sin cos 𝑡   𝑒!"#  (!) 

cos 𝑧 =
1
2    𝑒

!" + 𝑒!!"  

cos 𝑧 =
1
2 𝑒! !"# ! cos cos 𝑡 +   𝑖𝑒! !"# ! sin cos 𝑡 +   𝑒!"# ! cos cos 𝑡

−   𝑖𝑒!"# ! sin cos 𝑡  

cos 𝑧 =
1
2 cos cos 𝑡 𝑒! !"# ! + 𝑒!"# ! +   𝑖 sin cos 𝑡 𝑒! !"# ! − 𝑒!"# !  

cos 𝑧 = cos 𝑐𝑜𝑠 𝑡
𝑒! !"# ! + 𝑒!"# !

2 + 𝑖 sin 𝑐𝑜𝑠 𝑡
𝑒! !"# ! − 𝑒!"# !

2  

cos 𝑧 = cos 𝑐𝑜𝑠 𝑡 cosh 𝑠𝑖𝑛 𝑡 − 𝑖 sin 𝑐𝑜𝑠 𝑡 sinh 𝑠𝑖𝑛 𝑡  
 

Ray at Angle 𝜽 ∶   𝒕𝒆𝒊𝜽     ,      −∞ < 𝒕 < ∞ 
 

𝑒!" ! =   𝑒! !" =   𝑒!"(!"# ! !! !"# ! ) =   𝑒!" !"# ! !!!"#  (!)

= cos tcos 𝜃 + 𝑖 sin tcos 𝜃   𝑒!!!"#  (!) 
𝑒!!" ! =   𝑒!! !!!" =   𝑒!!"(!"# ! !! !"# ! ) =   𝑒!!" !"# ! !!!"#  (!)

= cos tcos 𝜃 − 𝑖 sin tcos 𝜃   𝑒!"#$  (!) 

cos 𝑧 =
1
2    𝑒

!" + 𝑒!!"  

cos 𝑧 =
1
2 𝑒! !"#$ ! cos 𝑡 cos 𝜃 +   𝑖𝑒! !"#$ ! sin tcos 𝜃

+   𝑒! !"# ! cos 𝑡 cos 𝜃 −   𝑖𝑒! !"# ! sin tcos 𝜃  

cos 𝑧 =
1
2 cos tcos 𝜃 𝑒! !"#$ ! + 𝑒! !"# !

+   𝑖 sin tcos 𝜃 𝑒! !"#$ ! − 𝑒! !"# !  

cos 𝑧 = cos 𝑡𝑐𝑜𝑠 𝜃
𝑒! !"#$ ! + 𝑒! !"# !

2

+ 𝑖 sin 𝑡𝑐𝑜𝑠 𝜃
𝑒! !"#$ ! − 𝑒!"#$ !

2  

cos 𝑧 = cos 𝑡𝑐𝑜𝑠 𝜃 cosh 𝑡𝑠𝑖𝑛 𝜃 − 𝑖 sin 𝑡𝑐𝑜𝑠 𝜃 sinh 𝑡𝑠𝑖𝑛 𝜃  
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