Complex Analysis
F riday February 6 Ron Buckmire
e mappings and to give you nplex numbers. In addition the extended z-plane.

Instructions:

- 1. Once you open the quiz, you have as much time as you need to complete it, but record your start time and end time at the top of this sheet.
- 2. You may use the book or any of your class notes. You must work alone.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. Relax and enjoy...
- 7. This quiz is due on Monday, February 9, in class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I,,	pledge my honor a	as a human	being and	Occidental	student,
that I have followed all the rules above to the	letter and in spirit	t.			

1. The Joukowsky mapping is a very famous mapping used in theoretical aerodynamics to represent cross-sections of airfoils. It is denoted by J(z) and defined as

$$w=J(z)=rac{1}{2}\left(z+rac{1}{z}
ight)$$

(a) (6 points) Sketch the image of the circle $|z| = \rho$ under the Joukowsky mapping. (Describe the image in the w-plane using complex inequalities, and in english). One approach to this problem would be to individually map several connected points on the circle in the z-plane to the w-plane, and see how they are connected there.

- (b) (1 point) Where does the unit circle |z| = 1 get mapped to?
- (c) (1 point) Show that $J\left(\frac{1}{z}\right) = J(z)$, for all z.
- (d) (2 points) Compute $\lim_{z\to 0} J(z)$ and $\lim_{z\to \infty} J(z)$