TEST 1: Friday, March 5, 2004

Directions: Read all 3 problems first before answering any. Notice the HINTS on each problem. You may have access to any notes or the textbook. This is a one hour test. You have 90 minutes to complete it.

<table>
<thead>
<tr>
<th>No.</th>
<th>Score</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
1. [40 pts. total] **Mapping.** We want to understand the implications on the location and orientation of the branch cut of the Principal Branch of the Complex Logarithm function when the argument changes from $\log(z)$ to $\log(Az + B)$ where A and B are complex numbers.

HINT: The principal branch cut is at $D = \{z : \Re(z) \leq 0 \cap \Im(z) = 0\}$.

(a) [5 pts/ Sketch the location and orientation of the branch cut of $\log(z)$ under the mapping $w = f_1(z) = z + z_0$ where $z_0 \in \mathcal{C}$.]

(b) [5 pts/ Sketch the location and orientation of the branch cut of $\log(z)$ under the mapping $w = f_2(z) = e^{i\theta}z$ where $\theta \in \mathcal{R}$.

(c) [5 pts/ Sketch the location and orientation of the branch cut of $\log(z)$ under the mapping $w = iz + 1$ where $\theta \in \mathcal{R}$.]

(d) [5 pts/ Sketch the location and orientation of the branch cut of $\log(iz + 1)$. [HINT: think about how part (c) and (d) are related questions, but different!]}
(e) [10 pts] Find a function \(\log (Az + B) \) which has its branch cut located at
\[D = \{ z = x + iy : y = x \cap x \geq 1 \} \]

(f) [10 pts] Is it possible to find a single-valued branch of \(\log(z) \), i.e. \(\mathcal{L}_\alpha(z) \) which has its branch cut at the same exact location and orientation as \(D \) from part (e)? **Why, or why not?** If possible, write down a function involving \(\mathcal{L}_\alpha \) which has the same branch cut \(D \).
2. [30 pts.] Algebra of Complex Numbers.
 Consider \(\cos(z) = b \) where \(b \in \mathbb{C} \). Therefore, \(z = \cos^{-1}(b) = \arccos(b) \)

 HINT: \(\cos(z) = \frac{e^{iz} + e^{-iz}}{2} \).

 (a) [10 pts] Show that \(z = \arccos(b) = -i \log(b \pm \sqrt{b^2 - 1}) \)

 (b) [10 pts] When \(b = 0 \), use information from part (a) to help you evaluate
 \(z = \arccos(0) \). **Indicate the location of your solutions in the Complex Plane.**

 (c) [10 pts] When \(b = 2 \), use information from part (a) to help you evaluate
 \(z = \arccos(2) \) **Indicate the location of your solutions in the Complex Plane.**
3. [30 pts. total] **Cauchy-Riemann Equations, Harmonic Conjugates.** Consider an analytic function \(f(z) = u(x, y) + iv(x, y) \). We want to show that the set of implicitly-defined curves \(u(x, y) = c_1 \) and \(v(x, y) = c_2 \) are orthogonal to each other at their point of intersection. Note that \(c_1 \) and \(c_2 \) are real constants. **HINT:** two curves are perpendicular whenever the product of their slopes equals -1.

(a) [10 pts] For \(f(z) = Az + B \) where \(A \) and \(B \) are complex constants, find \(u(x, y) \) and \(v(x, y) \). Show that the slopes of the implicit curves \(u(x, y) = c_1 \) and \(v(x, y) = c_2 \) are perpendicular to each other whenever they intersect.

(b) [10 pts] For \(f(z) = z^2 \) find \(u(x, y) \) and \(v(x, y) \) and show that the slopes of the implicit curves \(u(x, y) = c_1 \) and \(v(x, y) = c_2 \) are perpendicular whenever they intersect.

(c) [10 pts] Building on your answers in (a) and (b), use implicit differentiation and the Cauchy Riemann Equations to prove the general principle that for an analytic function \(f(z) = u(x, y) + iv(x, y) \) the family of curves \(u(x, y) = c_1 \) and \(v(x, y) = c_2 \) are orthogonal (i.e. perpendicular at a general point in the \(xy \)-plane).