Warning:
JavaScript is turned OFF. None of the links on this page will work until it is reactivated.
If you need help turning JavaScript On, click here.
The Concept Map you are trying to access has information related to:
Matrices, Matrix Addition is 3. Distributive under scalar Multiplication k(A+B) = kA + kB, Matrices can be treated as Individual objects for Mathematical Operations, Matrix Addition for example <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mfenced open="[" close="]"> <mtext> 1 15
-3 4 </mtext> </mfenced> <mtext> + </mtext> <mfenced open="[" close="]"> <mtext> 2 -9
-1 5 </mtext> </mfenced> <mtext> = </mtext> <mfenced open="[" close="]"> <mtext> 3 6
-4 9 </mtext> </mfenced> </mrow> </math>, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mfenced open="[" close="]"> <mtext> 1 0 0
0 1 0
0 0 1 </mtext> </mfenced> </mrow> </math> is also a diagonal matrix;Notice that in a square matrix of n columns and n rows there will be a diagonal of n elements. In this example, those are the only non-zero elements of the matrix, Matrices are related to Vectors, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mfenced open="[" close="]"> <mtext> 2 3 5
6 7 8 </mtext> </mfenced> <mtext> 
 </mtext> </mrow> </math> is a 2x3 matrix; It has 2 rows and 3 columns, Matrix Multiplication for example, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mfenced open="[" close="]"> <mtext> 2 -1 3
0 6 4 </mtext> </mfenced> <mtext> * </mtext> <mfenced open="[" close="]"> <mtext> 1 2
4 3
-2 6 </mtext> </mfenced> <mtext> = </mtext> <mfenced open="[" close="]"> <mtext> -8 19
16 42 </mtext> </mfenced> </mrow> </math>, Scalar Multiplication for example, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> 2 </mtext> <mfenced open="[" close="]"> <mtext> 1 0 -3
4 2 7 </mtext> </mfenced> <mtext> = </mtext> <mfenced open="[" close="]"> <mtext> 2 0 -6
8 4 14 </mtext> </mfenced> </mrow> </math>, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mfenced open="[" close="]"> <mtext> 1 0 0
0 1 0
0 0 1 </mtext> </mfenced> </mrow> </math> is a 3x3 matrix; It has 3 rows and 3 columns, Inverse Matrix can be denoted <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> M </mtext> <none/> <mtext> -1 </mtext> </mmultiscripts> <mtext> (the inverse of matrix M) </mtext> </mrow> </math>