Warning:
JavaScript is turned OFF. None of the links on this page will work until it is reactivated.
If you need help turning JavaScript On, click here.
The Concept Map you are trying to access has information related to:
Eigenvalues and Eigenvectors, Algebraic Multiplicity is The number of times a particular eigenvalue appears in the solution set of the characteristic polynomial, Eigenvectors are special vectors associated with a matrix and its eigenvalues which satisfy A x = λ x, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> A= </mtext> <mfenced open="[" close="]"> <mtext> 3 1
1 3 </mtext> </mfenced> <mtext> , then </mtext> <mfenced open="[" close="]"> <mtext> 1
1 </mtext> </mfenced> <mtext> and </mtext> <mfenced open="[" close="]"> <mtext> 1
-1 </mtext> </mfenced> <mtext> are eigenvectors
with eigenvalues 4 and 2 </mtext> </mrow> </math> since <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mfenced open="[" close="]"> <mtext> 3 1
1 3 </mtext> </mfenced> <mfenced open="[" close="]"> <mtext> 1
1 </mtext> </mfenced> <mtext> =4 </mtext> <mfenced open="[" close="]"> <mtext> 1
1 </mtext> </mfenced> </mrow> </math>, Eigenvalues can be used to compute Determinants, A x = λ x e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> A= </mtext> <mfenced open="[" close="]"> <mtext> 3 1
1 3 </mtext> </mfenced> <mtext> , then </mtext> <mfenced open="[" close="]"> <mtext> 1
1 </mtext> </mfenced> <mtext> and </mtext> <mfenced open="[" close="]"> <mtext> 1
-1 </mtext> </mfenced> <mtext> are eigenvectors
with eigenvalues 4 and 2 </mtext> </mrow> </math>, Eigenvectors of related matrices possess interesting properties, such as <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> Given Av=λv, then </mtext> <mmultiscripts> <mtext> A </mtext> <none/> <mtext> n </mtext> </mmultiscripts> <mtext> v= </mtext> <mmultiscripts> <mtext> λ </mtext> <none/> <mtext> n </mtext> </mmultiscripts> <mtext> v for any integer value of n </mtext> </mrow> </math>, Eigenvalues possess Important Features of Their Matrix, p(λ)=det(A-λI)=0 e.g, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> A= </mtext> <mfenced open="[" close="]"> <mtext> 3 1
1 3 </mtext> </mfenced> <mtext> , p(λ)= </mtext> <mmultiscripts> <mtext> λ </mtext> <none/> <mtext> 2 </mtext> </mmultiscripts> <mtext> -6λ+8=0 ⇒λ=4 or 2 are eigenvalues of A </mtext> </mrow> </math>, Eigenvectors of related matrices possess interesting properties, such as <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> If A is invertible (i.e. λ≠0), then 
its inverse matrix has the same eigenvectors
 with different associated eigenvalues 1/λ. </mtext> </mrow> </math>, Eigenvalues are special numbers which satisfy A x = λ x