Warning:
JavaScript is turned OFF. None of the links on this page will work until it is reactivated.
If you need help turning JavaScript On, click here.
The Concept Map you are trying to access has information related to:
Determinants, Determinants have properties If A has a zero row, then det(A)=0, Determinants have properties <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> det(kA)= </mtext> <mmultiscripts> <mtext> k </mtext> <none/> <mtext> n </mtext> </mmultiscripts> <mtext> det(A) where A is a nxn matrix </mtext> </mrow> </math>, Laplace Expansion Formula e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> det( </mtext> <mfenced open="[" close="]"> <mtext> a b c
d e f
g h i </mtext> </mfenced> <mtext> )=a </mtext> <mfenced open="|" close="|"> <mtext> e f
h i </mtext> </mfenced> <mtext> -b </mtext> <mfenced open="|" close="|"> <mtext> d f
g i </mtext> </mfenced> <mtext> +c </mtext> <mfenced open="|" close="|"> <mtext> d e
g h </mtext> </mfenced> </mrow> </math>, Determinants have properties <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> det( </mtext> <mmultiscripts> <mtext> A </mtext> <none/> <mtext> T </mtext> </mmultiscripts> <mtext> )=det(A) </mtext> </mrow> </math>, Determinants are A Real Number, Laplace Expansion Formula in general <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> det(A)= </mtext> <munderover> <sum/> <mtext> j=1 </mtext> <mtext> n </mtext> </munderover> <mmultiscripts> <mtext> a </mtext> <mtext> ij </mtext> <none/> </mmultiscripts> <mmultiscripts> <mtext> C </mtext> <mtext> ij </mtext> <none/> </mmultiscripts> </mrow> </math>, Non-Zero means The Matrix is Non-Singular, The Matrix is Non-Singular which means A linear system with this non-singular matrix as a coefficient matrix must have 0 or 1 solutions, Determinants have properties <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> det( </mtext> <mmultiscripts> <mtext> A </mtext> <none/> <mtext> -1 </mtext> </mmultiscripts> <mtext> )= </mtext> <mfrac> <mtext> 1 </mtext> <mtext> det(A) </mtext> </mfrac> </mrow> </math>, Determinants have properties det(AB)=det(A)det(B)