Linear Systems

Math 214 Spring 2008 ©2008 Ron Buckmire

Fowler 309 MWF 9:30 am - 10:25 am http://faculty.oxy.edu/ron/math/214/08/

Class 27

TITLE Projection Matrices and Orthogonal Diagonalization **CURRENT READING** Poole 5.4

Summary

How to find the projection matrix for projection onto a subspace.

Homework Assignment

HW #26: Poole, Section 5.4: 1,6,7,8,9,11,12,13,14,22,23. EXTRA CREDIT 25.

1. Recalling Projection of a Vector onto Another Vector

For any vectors \vec{u} and \vec{v} where $\vec{u} \neq 0$ then **the projection of** \vec{v} **onto** \vec{u} is the vector $\operatorname{proj}_{\vec{u}}(\vec{v})$ defined by:

$$\operatorname{proj}_{\vec{u}}(\vec{v}) = \left(\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}\right) \vec{u} = \left(\frac{\vec{u}^T \vec{v}}{\vec{u}^T \vec{u}}\right) \vec{u}$$

(Since $\vec{a} \cdot \vec{b} = \vec{a}^T \vec{b} = \vec{b}^T \vec{a}$)

2. Projecting a Vector Onto A Subspace

What are the projections of
$$\vec{b} = \begin{bmatrix} 2\\3\\4 \end{bmatrix}$$
 onto
(a) the *z*-axis, i.e. span $\left\{ \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$?
(b) the *xy*-plane, i.e. span $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$?

We can find P, a projection matrix, which finds the vector $\vec{p} = P\vec{b}$ which is the projection of \vec{b} onto a vector space (e.g. the z axis, the xy-plane) spanned by a given basis \mathcal{W} where $\vec{p} = \text{proj}_{\mathcal{W}}(\vec{b})$.

Consider $P_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Do these matrices do what we want them to?

Note that the *xy*-plane is the column space of a matrix A, col(A) where A is $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$, a matrix whose columns are a basis for the subspace consisting of the *xy*-plane.

Also note that the z-axis is the column space of the matrix $A = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

In general, we are trying to find the projection of a vector \vec{b} onto the column space of any $m \times n$ matrix (or the span of a given basis for a vector space).

3. Computing The Projection Matrix

Let's look more closely at that projection formula again:

$$\operatorname{proj}_{\vec{u}}(\vec{v}) = \left(\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}\right) \vec{u}$$
$$= \left(\frac{\vec{u}^T \vec{v}}{\vec{u}^T \vec{u}}\right) \vec{u}$$
$$= \frac{\vec{u}(\vec{u}^T \vec{v}) \vec{u}}{\vec{u}^T \vec{u}}$$
$$= \frac{\vec{u}(\vec{u}^T \vec{v})}{\vec{u}^T \vec{u}}$$
$$= \left(\frac{\vec{u} \vec{u}^T}{\vec{u}^T \vec{u}}\right) \vec{v}$$
$$\operatorname{proj}_{\vec{u}}(\vec{v}) = P \vec{v}$$

So the projection matrix P for projecting a vector \vec{v} onto a vector \vec{u} is given by $P = \frac{\vec{u}\vec{u}^T}{\vec{u}^T\vec{u}}$.

Exercise

Use the above formula to find the projection matrix for the projection of the vector $\begin{bmatrix} 2\\3\\4 \end{bmatrix}$ onto the *z*-axis.

EXAMPLE

Let's change the formula to find the projection matrix onto the subspace spanned by span	$\left[\begin{array}{c} 1\\ 0\\ 0 \end{array} \right]$],	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$]]	۶,
i.e. the xy -plane.		Т	LU.])	

Projection Matrix Formula

So the projection matrix P for projecting a vector \vec{v} onto a subspace equal to the col(A) is given by $P = A(A^T A)^{-1} A^T$.

Exercise

Find the Projection matrix P which computes the projection of a vector \vec{v} onto the subspace \mathcal{W} where \mathcal{W} is the plane x - y + 2z = 0. Use your answer to obtain the projection of $\begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$ onto \mathcal{W} . After doing that, we can also find the projection of $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ onto \mathcal{W} without doing much work. Why?

4. Orthogonal Diagonalization

DEFINITION

A square matrix A is orthogonally diagonalizable if there exists an orthogonal matrix Q and a diagonal matrix D such that $Q^T A Q = D$ (or $A = Q D Q^T$.)

EXAMPLE

Let's show the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$ is orthogonally diagonalizable.

Theorem 5.18

If A is a real symmetric matrix, then the eigenvalues of A are real.

Theorem 5.19

If A is a symmetric matrix, then any two eigenvectors corresponding to two distinct eigenvalues of A are orthogonal.

Theorem 5.20

A real square matrix is symmetric IF and ONLY IF it is orthogonally diagonalizable. This result is known as **The Spectral Theorem.**

DEFINITION

The **spectrum** of a matrix is the set of all eigenvalues of the matrix. The **spectral decomposition** of a matrix A is the expression $A = \sum_{i=1}^{n} \lambda_i \vec{q_i} \vec{q_i}^T$ where $\vec{q_1}, \vec{q_2}, \vec{q_3}, \dots, \vec{q_n}$ are the columns of the orthogonal matrix Q.

$$\begin{aligned} A &= QDQ^{T} \\ &= \left[\begin{array}{cccc} \vec{q_{1}} & \vec{q_{2}} & \vec{q_{3}} & \dots & \vec{q_{n}} \end{array} \right] \left[\begin{array}{ccccc} \lambda_{1} & 0 & 0 & 0 & 0 \\ 0 & \lambda_{2} & 0 & 0 & 0 \\ 0 & 0 & \lambda_{3} & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & \lambda_{n} \end{array} \right] \left[\begin{array}{c} \vec{q_{1}^{T}} \\ \vec{q_{2}^{T}} \\ \vec{q_{3}^{T}} \\ \vdots \\ \vec{q_{n}^{T}} \end{array} \right] \\ &= \left[\begin{array}{c} \lambda_{1} \vec{q_{1}} & \lambda_{2} \vec{q_{2}} & \lambda_{3} \vec{q_{3}} & \dots & \lambda_{n} \vec{q_{n}} \end{array} \right] \left[\begin{array}{c} \vec{q_{2}^{T}} \\ \vec{q_{2}^{T}} \\ \vec{q_{3}^{T}} \\ \vdots \\ \vec{q_{n}^{T}} \end{array} \right] \\ &= \begin{array}{c} \lambda_{1} \vec{q_{1}} \vec{q_{1}^{T}} + \lambda_{2} \vec{q_{2}} \vec{q_{2}^{T}} + \dots + \lambda_{n} \vec{q_{n}} \vec{q_{n}^{T}} = \sum_{i=1}^{n} \lambda_{i} \vec{q_{i}} \vec{q_{i}^{T}} = \sum_{i=1}^{n} \lambda_{i} \left(\frac{\vec{q_{i}} \vec{q_{i}^{T}}}{\vec{q_{i}^{T}} \vec{q_{i}}} \right) \end{aligned}$$

Does this expression look familiar? Each of the expressions $\vec{q}_i \vec{q}_i^T$ are rank 1 matrices which represent the projection matrix for projecting onto the 1-dimension space spanned by each \vec{q}_i . (Recall $\vec{q}_i^T \vec{q}_i = 1$). The above expression is thus sometimes known as the **projection form of the Spectral Theorem**.

Exercise

Let's find the spectral decomposition of the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$.

CLICKER QUESTION 27.1

True or False If *P* is a projection matrix of the form $P = A(A^T A)^{-1} A^T$ then it is a symmetric matrix. **CLICKER QUESTION 27.2**

True or False If *P* is a projection matrix of the form $P = A(A^T A)^{-1} A^T$ then it is an invertible matrix. **CLICKER QUESTION 27.3**

True or False If A is a symmetric, invertible matrix, then $A^{-1} = A^T$. **CLICKER QUESTION 27.4**

If A is an $n \times n$ real symmetric matrix, then which of the following is true?

- 1. Each eigenvalue of A is real.
- 2. If A is invertible, then its inverse is also symmetric.
- 3. If Ax = 2x and Ay = 3y then $x \cdot y = 0$.
- 4. If λ_1 and λ_2 are two different eigenvalues of A and W_1 and W_2 are the corresponding eigenspaces, then W_1 and W_2 are orthogonal sets.
- 5. All of the above are true.
- 6. More than one, but not all, of the above are true.