$\mathbf{L i n e a r} \mathbf{S}_{\text {ystems }}$

Class 27

TITLE Projection Matrices and Orthogonal Diagonalization
CURRENT READING Poole 5.4

Summary

How to find the projection matrix for projection onto a subspace.

Homework Assignment

HW \#26: Poole, Section 5.4: 1,6,7,8,9,11,12,13,14,22,23. EXTRA CREDIT 25.

1. Recalling Projection of a Vector onto Another Vector

For any vectors \vec{u} and \vec{v} where $\vec{u} \neq 0$ then the projection of \vec{v} onto \vec{u} is the vector $\operatorname{proj}_{\vec{u}}(\vec{v})$ defined by:

$$
\operatorname{proj}_{\vec{u}}(\vec{v})=\left(\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}\right) \vec{u}=\left(\frac{\vec{u}^{T} \vec{v}}{\vec{u}^{T} \vec{u}}\right) \vec{u}
$$

(Since $\vec{a} \cdot \vec{b}=\vec{a}^{T} \vec{b}=\vec{b}^{T} \vec{a}$)

2. Projecting a Vector Onto A Subspace

What are the projections of $\vec{b}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$ onto
(a) the z-axis, i.e. span $\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$?
(b) the $x y$-plane, i.e. span $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$?

We can find P, a projection matrix, which finds the vector $\vec{p}=P \vec{b}$ which is the projection of \vec{b} onto a vector space (e.g. the z axis, the $x y$-plane) spanned by a given basis \mathcal{W} where $\vec{p}=\operatorname{proj}_{\mathcal{W}}(\vec{b})$.

Consider $P_{1}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $P_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$. Do these matrices do what we want them to?
Note that the $x y$-plane is the column space of a matrix $A, \operatorname{col}(A)$ where A is $\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$, a matrix whose columns are a basis for the subspace consisting of the $x y$-plane.
Also note that the z-axis is the column space of the matrix $A=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
In general, we are trying to find the projection of a vector \vec{b} onto the column space of any $m \times n$ matrix (or the span of a given basis for a vector space).

3. Computing The Projection Matrix

Let's look more closely at that projection formula again:

$$
\begin{aligned}
\operatorname{proj}_{\vec{u}}(\vec{v}) & =\left(\frac{\vec{u} \cdot \vec{v}}{\vec{u}^{\vec{u}} \vec{u}}\right) \vec{u} \\
& =\left(\frac{\vec{u}^{T} \vec{v}}{\vec{u}^{T} \vec{u}}\right) \vec{u} \\
& =\frac{\left(\vec{u}^{T} \vec{v}\right) \vec{u}}{\vec{u}^{T} \vec{u}} \\
& =\frac{\vec{u}\left(\vec{u}^{T} \vec{v}\right)}{\vec{u}^{T} \vec{u}} \\
& =\frac{\left(\vec{u} \vec{u}^{T}\right) \vec{v}}{\vec{u}^{T} \vec{u}} \\
& =\left(\frac{\vec{u} \vec{u}^{T}}{\vec{u}^{T} \vec{u}}\right) \vec{v} \\
\operatorname{proj}_{\vec{u}}(\vec{v}) & =P \vec{v}
\end{aligned}
$$

So the projection matrix P for projecting a vector \vec{v} onto a vector \vec{u} is given by $P=\frac{\vec{u} \vec{u}^{T}}{\vec{u}^{T} \vec{u}}$.

Exercise

Use the above formula to find the projection matrix for the projection of the vector $\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$ onto the z-axis.

EXAMPLE

Let's change the formula to find the projection matrix onto the subspace spanned by span $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$, i.e. the $x y$-plane.

Projection Matrix Formula

So the projection matrix P for projecting a vector \vec{v} onto a subspace equal to the $\operatorname{col}(A)$ is given by $P=A\left(A^{T} A\right)^{-1} A^{T}$.

Exercise

Find the Projection matrix P which computes the projection of a vector \vec{v} onto the subspace \mathcal{W} where
\mathcal{W} is the plane $x-y+2 z=0$. Use your answer to obtain the projection of $\left[\begin{array}{c}3 \\ -1 \\ 2\end{array}\right]$ onto \mathcal{W}. After doing that, we can also find the projection of $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ onto \mathcal{W} without doing much work. Why?

4. Orthogonal Diagonalization

DEFINITION

A square matrix A is orthogonally diagonalizable if there exists an orthogonal matrix Q and a diagonal matrix D such that $Q^{T} A Q=D$ (or $A=Q D Q^{T}$.)

EXAMPLE
Let's show the matrix $A=\left[\begin{array}{cc}1 & 2 \\ 2 & -2\end{array}\right]$ is orthogonally diagonalizable.

Theorem 5.18

If A is a real symmetric matrix, then the eigenvalues of A are real.

Theorem 5.19

If A is a symmetric matrix, then any two eigenvectors corresponding to two distinct eigenvalues of A are orthogonal.

Theorem 5.20

A real square matrix is symmetric IF and ONLY IF it is orthogonally diagonalizable. This result is known as The Spectral Theorem.

The spectrum of a matrix is the set of all eigenvalues of the matrix. The spectral decomposition of a matrix A is the expression $A=\sum_{i=1}^{n} \lambda_{i} \vec{q}_{i} \vec{q}_{i}^{T}$ where $\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}, \ldots, \vec{q}_{n}$ are the columns of the orthogonal matrix Q.

$$
\begin{aligned}
A & =Q D Q^{T} \\
& =\left[\begin{array}{lllll}
\overrightarrow{q_{1}} & \overrightarrow{q_{2}} & \overrightarrow{q_{3}} & \ldots & \overrightarrow{q_{n}}
\end{array}\right]\left[\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 & 0 \\
0 & 0 & \lambda_{3} & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
\vec{q}_{1}^{T} \\
\vec{q}_{T}^{T} \\
\vec{q}_{3}^{T} \\
\vdots \\
\vec{q}_{n}^{T}
\end{array}\right] \\
& =\left[\begin{array}{lllll}
\lambda_{1} \overrightarrow{q_{1}} & \lambda_{2} \overrightarrow{q_{2}} & \lambda_{3} \overrightarrow{q_{3}} & \ldots & \lambda_{n} \overrightarrow{q_{n}}
\end{array}\right]\left[\begin{array}{c}
\vec{q}_{2}^{T} \\
\overrightarrow{q_{2}^{T}} \\
\overrightarrow{q_{3}^{T}} \\
\vdots \\
\overrightarrow{q_{n}^{T}}
\end{array}\right] \\
& =\lambda_{1} \overrightarrow{q_{1}} \vec{q}_{1}^{T}+\lambda_{2} \overrightarrow{q_{2}} \vec{q}_{2}^{T}+\ldots+\lambda_{n} \overrightarrow{q_{n}} \vec{q}_{n}^{T}=\sum_{i=1}^{n} \lambda_{i} \overrightarrow{q_{i}} \vec{q}_{i}^{T}=\sum_{i=1}^{n} \lambda_{i}\left(\frac{\vec{q}_{i} \vec{q}_{i}^{T}}{\vec{q}_{i}^{T} \vec{q}_{i}}\right)
\end{aligned}
$$

Does this expression look familiar? Each of the expressions $\vec{q}_{i} \vec{q}_{i}^{T}$ are rank 1 matrices which represent the projection matrix for projecting onto the 1 -dimension space spanned by each \vec{q}_{i}. (Recall $\vec{q}_{i}^{T} \vec{q}_{i}=1$). The above expression is thus sometimes known as the projection form of the Spectral Theorem.

Exercise

Let's find the spectral decomposition of the matrix $A=\left[\begin{array}{cc}1 & 2 \\ 2 & -2\end{array}\right]$.

True or False If P is a projection matrix of the form $P=A\left(A^{T} A\right)^{-1} A^{T}$ then it is a symmetric matrix.

CLICKER QUESTION 27.2

True or False If P is a projection matrix of the form $P=A\left(A^{T} A\right)^{-1} A^{T}$ then it is an invertible matrix. CLICKER QUESTION 27.3

True or False If A is a symmetric, invertible matrix, then $A^{-1}=A^{T}$.
CLICKER QUESTION 27.4

If A is an $n \times n$ real symmetric matrix, then which of the following is true?

1. Each eigenvalue of A is real.
2. If A is invertible, then its inverse is also symmetric.
3. If $A x=2 x$ and $A y=3 y$ then $x \cdot y=0$.
4. If λ_{1} and λ_{2} are two different eigenvalues of A and W_{1} and W_{2} are the corresponding eigenspaces, then W_{1} and W_{2} are orthogonal sets.
5. All of the above are true.
6. More than one, but not all, of the above are true.
