## $\mathbf{L i n e a r} \mathbf{S}_{\text {ystems }}$

## Class 26

TITLE Gram-Schmidt Orthogonalization Process and QR factorization
CURRENT READING Poole 5.3

## Summary

There is a very cool algorithm for producing an orthogonal basis from a "regular" basis for a given subspace. The process is known as Gram-Schmidt orthogonalization. We also are introduced to another matrix factorization, $A=Q R$.

## Homework Assignment

HW \#25 Poole, Section 5.3: 1,2,3,4,6,11,13, 17. EXTRA CREDIT 18.

## 1. Gram-Schmidt Orthogonalization

Suppose we start off with three linearly independent vectors $\vec{a}, \vec{b}$ and $\vec{c}$. First we will construct three orthogonal vectors $\vec{A}, \vec{B}$ and $\vec{C}$ and then normalize these to produce three orthonormal vectors $\overrightarrow{q_{1}}, \overrightarrow{q_{2}}$ and $\overrightarrow{q_{3}}$ from our original linearly independent trio.

STEP 1. First choice, start with $\vec{a}$.

1. Let $\vec{A}=\vec{a}$.

STEP 2. Second choice, select in the direction of $\vec{b}$ with the projection in the direction of $\vec{a}$ removed. Then this vector should be orthogonal to $\vec{a}$.
2. Let $\vec{B}=\vec{b}-\left(\frac{\vec{A} \cdot \vec{b}}{\vec{A} \cdot \vec{A}}\right) \vec{A}=\vec{b}-\operatorname{proj}_{\vec{A}}(\vec{b})=\operatorname{perp}_{\vec{A}}(\vec{b})$

STEP 3. Third choice, select in the direction of $\vec{c}$ with the projections of $\vec{c}$ in the direction of $\vec{a}$ and in the direction of $\vec{b}$ removed. So this third vector will be orthogonal to both of those!
3. Let $\vec{C}=\vec{c}-\left(\frac{\vec{A} \cdot \vec{c}}{\vec{A} \cdot \vec{A}}\right) \vec{A}-\left(\frac{\vec{B} \cdot \vec{c}}{\vec{B} \cdot \vec{B}}\right) \vec{B}=\vec{c}-\operatorname{proj}_{\vec{A}}(\vec{c})-\operatorname{proj}_{\vec{B}}(\vec{c})$

STEP 4. Normalize $A, B$ and $C$ by dividing by their magnitudes to obtain $\overrightarrow{q_{1}}=\frac{\vec{A}}{\|\vec{A}\|}, \overrightarrow{q_{2}}=\frac{\vec{B}}{\|\vec{B}\|}$ and $\overrightarrow{q_{3}}=\frac{\vec{C}}{\|\vec{C}\|}$.
The vectors $\overrightarrow{q_{1}}, \overrightarrow{q_{2}}$ and $\overrightarrow{q_{3}}$ are orthonormal! Let's verify this.

EXAMPLE
Let's use Gram-Schmidt to convert the linearly independent vectors $\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 0 \\ -2\end{array}\right],\left[\begin{array}{c}3 \\ -3 \\ 3\end{array}\right]\right\}$ to three orthonormal vectors.

Does it matter which vector you choose to start the orthogonalization process with?

## 2. $\mathrm{A}=\mathrm{QR}$ Factorization

Gram-Schmidt Orthogonalization is equivalent to factoring a $m \times n$ matrix $A$ into the product of a $m \times n$ matrix $Q$ with orthonormal columns and $R$ is an invertible $n \times n$ upper triangular matrix.

$$
\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]=\left[\begin{array}{lll}
\overrightarrow{q_{1}} & \overrightarrow{q_{2}} & \overrightarrow{q_{3}}
\end{array}\right]\left[\begin{array}{ccc}
\vec{q}_{1}^{T} \vec{a} & \vec{q}_{1}^{T} \vec{b} & \vec{q}^{T} \vec{c} \\
& {\overrightarrow{q_{2}}}^{T} \vec{b} & {\overrightarrow{q_{2}}}^{T} \vec{c} \\
& & {\overrightarrow{q_{3}}}^{T} \vec{c}
\end{array}\right]
$$

## Exercise

Strang, page 230, \#23. Find $\overrightarrow{q_{1}}, \overrightarrow{q_{2}}$, and $\overrightarrow{q_{3}}$ as combinations of the independent columns of $A=\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 3 & 6\end{array}\right]$ and write $A$ as $Q R$.

Why The QR Factorization Is Useful
If an $m \times n$ matrix $A$ is able to be factored into $A=Q R$ with the properties above ( $Q$ has orthonormal columns and $R$ is an upper triangular invertible matrix) then this means that the computation of the solution of $A \vec{x}=\vec{b}$ can be simplified.

$$
\begin{aligned}
A \vec{x} & =\vec{b} \quad \text { (The orginal linear system) } \\
Q R \vec{x} & =\vec{b} \quad(\text { factor } A \text { into the product of } Q \text { and } R) \\
Q(R \vec{x}) & =\vec{b} \quad(\text { Let } \vec{y}=R \vec{x}) \\
Q \vec{y} & =\vec{b} \quad \text { (Now we have two simpler linear systems } y=R x \text { and } Q y=b \text { instead of } A x=b) \\
Q^{T} Q \vec{y} & =Q^{T} \vec{b} \quad\left(\text { But since } Q \text { has orthonormal columns } Q^{T}=Q^{-1}\right) \\
\vec{y} & =Q^{T} \vec{b} \quad\left(\text { Since } Q^{T} Q=\mathcal{I}\right) \\
R \vec{x} & =Q^{T} \vec{b} \quad(\text { Recall that } \vec{y}=R \vec{x}) \\
\vec{x} & =R^{-1} Q^{T} \vec{b}
\end{aligned}
$$

Finding the solution of the linear system will involve inverting an upper triangular matrix and taking a transpose. The $Q R$ factorization also occurs in the computation of eigenvalues numerically and the Least Squares approximation problem.

Let $A$ be an $m \times n$ matrix with linearly independent columns $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}$.
Applying the Gram-Schmidt process to $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}$ will produce

1. an orthogonal basis for $A$.
2. an orthogonal basis for the column space of $A$.
3. an orthogonal basis for the row space of $A$.
4. an orthogonal basis for the null space of $A$.

## CLICKER QUESTION 26.2

Let $v_{1}=(2,-1,0)$ and $v_{2}=(1,1,1)$. The Gram-Schmidt process, when applied to these vectors, produces $\left\{v_{1}^{\prime}, v_{2}^{\prime}\right\}$ where

1. $v_{1}^{\prime}=(2,-1,0)$ and $v_{2}^{\prime}=(-1,2,1)$.
2. $v_{1}^{\prime}=(2,-1,0)$ and $v_{2}^{\prime}=(3 / 5,6 / 5,1)$.
3. $v_{1}^{\prime}=(2,-1,0)$ and $v_{2}^{\prime}=(2 / 5,-1 / 5,0)$.
4. $v_{1}^{\prime}=(2,-1,0)$ and $v_{2}^{\prime}=(7 / 5,6 / 5,1)$.
5. $v_{1}^{\prime}=(2,-1,0)$ and $v_{2}^{\prime}=(3 / 2,3,1)$.

## CLICKER QUESTION 26.3

## True or False

If $W=\operatorname{span}\left\{\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$, then $S=\operatorname{span}\left\{\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 6 \\ 5\end{array}\right]\right\}$ is an orthogonal basis for $W$.

## CLICKER QUESTION 26.4

True or False The Gram-Schmidt Orthorgonlization process can be used to construct an orthonormal set of vectors from an arbitrary set of vectors.

