Linear Systems

Math 214 Spring 2008 ©2008 Ron Buckmire Fowler 309 MWF 9:30 am - 10:25 am http://faculty.oxy.edu/ron/math/214/08/

Class 26

TITLE Gram-Schmidt Orthogonalization Process and QR factorization **CURRENT READING** Poole 5.3

Summary

There is a very cool algorithm for producing an orthogonal basis from a "regular" basis for a given subspace. The process is known as Gram-Schmidt orthogonalization. We also are introduced to *another* matrix factorization, A = QR.

Homework Assignment HW #25 Poole, Section 5.3 : 1,2,3,4,6,11,13, 17. EXTRA CREDIT 18.

1. Gram-Schmidt Orthogonalization

Suppose we start off with three linearly independent vectors \vec{a} , \vec{b} and \vec{c} . First we will construct three orthogonal vectors \vec{A} , \vec{B} and \vec{C} and then normalize these to produce three orthonormal vectors $\vec{q_1}$, $\vec{q_2}$ and $\vec{q_3}$ from our original linearly independent trio.

STEP 1. First choice, start with \vec{a} . **1.** Let $\vec{A} = \vec{a}$.

STEP 2. Second choice, select in the direction of \vec{b} with the projection in the direction of \vec{a} removed. Then this vector should be orthogonal to \vec{a} .

2. Let
$$\vec{B} = \vec{b} - \left(\frac{\vec{A} \cdot \vec{b}}{\vec{A} \cdot \vec{A}}\right) \vec{A} = \vec{b} - \operatorname{proj}_{\vec{A}}(\vec{b}) = \operatorname{perp}_{\vec{A}}(\vec{b})$$

STEP 3. Third choice, select in the direction of \vec{c} with the projections of \vec{c} in the direction of \vec{a} and in the direction of \vec{b} removed. So this third vector will be orthogonal to both of those!

3. Let
$$\vec{C} = \vec{c} - \left(\frac{\vec{A} \cdot \vec{c}}{\vec{A} \cdot \vec{A}}\right) \vec{A} - \left(\frac{\vec{B} \cdot \vec{c}}{\vec{B} \cdot \vec{B}}\right) \vec{B} = \vec{c} - \operatorname{proj}_{\vec{A}}(\vec{c}) - \operatorname{proj}_{\vec{B}}(\vec{c})$$

STEP 4. Normalize A, B and C by dividing by their magnitudes to obtain $\vec{q_1} = \frac{\vec{A}}{||\vec{A}||}$, $\vec{q_2} = \frac{\vec{B}}{||\vec{B}||}$ and $\vec{q_3} = \frac{\vec{C}}{||\vec{C}||}$.

The vectors $\vec{q_1}, \vec{q_2}$ and $\vec{q_3}$ are **orthonormal!** Let's verify this.

EXAMPLE

Let's use Gram-Schmidt to convert the linearly independent vectors $\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\-2 \end{bmatrix}, \begin{bmatrix} 3\\-3\\3 \end{bmatrix} \right\}$ to

three orthonormal vectors.

Does it matter which vector you choose to start the orthogonalization process with?

2. A=QR Factorization

Gram-Schmidt Orthogonalization is equivalent to factoring a $m \times n$ matrix A into the product of a $m \times n$ matrix Q with orthonormal columns and R is an invertible $n \times n$ upper triangular matrix.

$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{bmatrix} \vec{q_1} & \vec{q_2} & \vec{q_3} \end{bmatrix} \begin{bmatrix} \vec{q_1}^T \vec{a} & \vec{q_1}^T \vec{b} & \vec{q_1}^T \vec{c} \\ \vec{q_2}^T \vec{b} & \vec{q_2}^T \vec{c} \\ \vec{q_3}^T \vec{c} \end{bmatrix}$$

Exercise

Strang, page 230, #23. Find $\vec{q_1}$, $\vec{q_2}$, and $\vec{q_3}$ as combinations of the independent columns of $\begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$

 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 3 & 6 \end{bmatrix} \text{ and write } A \text{ as } QR.$

Why The QR Factorization Is Useful

If an $m \times n$ matrix A is able to be factored into A = QR with the properties above (Q has orthonormal columns and R is an upper triangular invertible matrix) then this means that the computation of the solution of $A\vec{x} = \vec{b}$ can be simplified.

$$\begin{array}{rcl} A\vec{x} &=& \vec{b} & (\text{The orginal linear system}) \\ QR\vec{x} &=& \vec{b} & (\text{factor } A \text{ into the product of } Q \text{ and } R) \\ Q(R\vec{x}) &=& \vec{b} & (\text{Let } \vec{y} = R\vec{x}) \\ Q\vec{y} &=& \vec{b} & (\text{Now we have two simpler linear systems } y = Rx \text{ and } Qy = b \text{ instead of } Ax = b) \\ Q^T Q\vec{y} &=& Q^T \vec{b} & (\text{But since } Q \text{ has orthonormal columns } Q^T = Q^{-1}) \\ \vec{y} &=& Q^T \vec{b} & (\text{Since } Q^T Q = \mathcal{I}) \\ R\vec{x} &=& Q^T \vec{b} & (\text{Recall that } \vec{y} = R\vec{x}) \\ \vec{x} &=& R^{-1} Q^T \vec{b} \end{array}$$

Finding the solution of the linear system will involve inverting an upper triangular matrix and taking a transpose. The QR factorization also occurs in the computation of eigenvalues numerically and the Least Squares approximation problem.

CLICKER QUESTION 26.1

Let A be an $m \times n$ matrix with linearly independent columns $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n$. Applying the Gram-Schmidt process to $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n$ will produce

- 1. an orthogonal basis for A.
- 2. an orthogonal basis for the column space of A.
- 3. an orthogonal basis for the row space of A.
- 4. an orthogonal basis for the null space of A.

CLICKER QUESTION 26.2

Let $v_1 = (2, -1, 0)$ and $v_2 = (1, 1, 1)$. The Gram-Schmidt process, when applied to these vectors, produces $\{v'_1, v'_2\}$ where

- 1. $v'_1 = (2, -1, 0)$ and $v'_2 = (-1, 2, 1)$.
- 2. $v'_1 = (2, -1, 0)$ and $v'_2 = (3/5, 6/5, 1)$.
- 3. $v'_1 = (2, -1, 0)$ and $v'_2 = (2/5, -1/5, 0)$.
- 4. $v'_1 = (2, -1, 0)$ and $v'_2 = (7/5, 6/5, 1)$.
- 5. $v'_1 = (2, -1, 0)$ and $v'_2 = (3/2, 3, 1)$.

CLICKER QUESTION 26.3

True or False

If
$$W = \operatorname{span}\left\{ \begin{bmatrix} 2\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$
, then $S = \operatorname{span}\left\{ \begin{bmatrix} 2\\-1\\0 \end{bmatrix}, \begin{bmatrix} 3\\6\\5 \end{bmatrix} \right\}$ is an orthogonal basis for W .
CLICKER QUESTION 26.4

True or False The Gram-Schmidt Orthorgonlization process can be used to construct an orthonormal set of vectors from an arbitrary set of vectors.