$\mathbf{L i n e a r} \mathbf{S}_{\text {ystems }}$

Class 25

TITLE Orthogonal Complements and Orthogonal Projections

CURRENT READING Poole 5.1

Summary

We will learn about an incredibly important feature of vectors and orthogonal vector spaces.

Homework Assignment

HW\#24 Poole, Section 5.2: 2,3,4,5,6,7,12,15,16,17,19,20,21. EXTRA CREDIT 29.

DEFINITION

Two subspaces \mathcal{V} and \mathcal{W} are said to be orthogonal if every vector $\vec{v} \in \mathcal{V}$ is perpendicular to every vector $\vec{w} \in \mathcal{W}$. The orthogonal complement of a subspace \mathcal{V} contains EVERY vector that is perpendicular to (vectors in) \mathcal{V}. This space is denoted \mathcal{V}^{\perp}. In other words, $\vec{v} \cdot \vec{w}=0$ or $\vec{v}^{T} \vec{w}=0$ for every \vec{v} in \mathcal{V} and \vec{w} in \mathcal{W}.

$$
\mathcal{W}^{\perp}=\left\{\vec{v} \in \mathbb{R}^{n}: \vec{v} \cdot \vec{w}=0 \text { for all } \vec{w} \text { in } \mathcal{W}\right\}
$$

Example 1. Q: In \mathbb{R}^{3}, let $V=$ the z-axis. What is V^{\perp} ? A: \qquad
$\mathbf{Q}:$ In \mathbb{R}^{3}, what is the orthogonal complement of the $x y$-plane?
A: \qquad
Q: In \mathbb{R}^{3}, are the $x y$-plane and the $y z$-plane orthogonal complements of each other?
A: No, there are vectors in one plane that are not perpendicular to vectors in the other plane. (Can you find one of each?)
Q: In \mathbb{R}^{4} (with axes $x_{1}, x_{2}, x_{3}, x_{4}$), what is the orthogonal complement of the $x_{1} x_{2}$-plane?
A: \qquad
We can summarize some of the properties of orthogonal complements.

Theorem 5.9

Let \mathcal{W} be a subspace of \mathbb{R}^{n}.
[a.] \mathcal{W}^{\perp} is a subspace of \mathbb{R}^{n}
[b.] $\left(\mathcal{W}^{\perp}\right)^{\perp}=\mathcal{W}$
[c.] $\left(\mathcal{W}^{\perp}\right) \cap \mathcal{W}=\overrightarrow{0}$
[d.] If $\mathcal{W}=\operatorname{span}\left(\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}, \ldots, \vec{w}_{n}\right)$ then \vec{v} is in \mathcal{W}^{\perp} only if $\vec{v} \cdot \vec{w}_{i}=0$ for every \vec{w}_{i} in \mathcal{W} for $i=1 \ldots n$

These features can be described using the associated subspaces of an $m \times n$ matrix A.

Theorem 5.10

Let A be an $m \times n$ matrix. Then the orthogonal complement of the row space of A is the null space of A. The orthogonal complement of the column space of A is the null space of A^{T} (sometimes called the left null space). Mathematically, this can be written:

$$
(\operatorname{row}(A))^{\perp}=\operatorname{null}(A) \text { and }(\operatorname{col}(A))^{\perp}=\operatorname{null}\left(A^{T}\right)
$$

These four subspaces are called the fundamental subspaces of the matrix A.

This page will have a reproduction of a diagram of the relationship of th four fundamental subpsaces from Gilbert Strang's Linear Algebra textbook.

Let's find bases for the four fundamental subspaces of the matrix $A=\left[\begin{array}{ccccc}1 & 1 & 3 & 1 & 6 \\ 2 & -1 & 0 & 1 & -1 \\ -3 & 2 & 1 & -2 & 1 \\ 4 & 1 & 6 & 1 & 3\end{array}\right]$.
Suppose we know that $\operatorname{rref}(A)=\left[\begin{array}{ccccc}1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ and $\operatorname{rref}\left(A^{T}\right)=\left[\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$. Write down the dimensions of each fundamental subspace and describe the subspace-orthogonal complement pairs.

DEFINITION

Let \mathcal{W} be a subspace of \mathbb{R}^{n} and let $\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}, \ldots, \vec{w}_{n}\right\}$ be an orthogonal basis for \mathcal{W}. For any vector \vec{v} in \mathbb{R}^{n}, the orthogonal project of \vec{v} onto \mathcal{W} is defined as

$$
\operatorname{proj}_{\mathcal{W}}(\vec{v})=\sum_{j=1}^{n} \operatorname{proj}_{\vec{w}_{j}}(\vec{v})=\sum_{j=1}^{n} \frac{\vec{v} \cdot \vec{w}_{j}}{\vec{w}_{j} \cdot \vec{w}_{j}} \vec{w}_{j}
$$

The component of \vec{v} orthogonal to \mathcal{W} is the vector $\operatorname{perp}_{\mathcal{W}}(\vec{v})=\vec{v}-\operatorname{proj}_{\mathcal{W}}(\vec{v})$
NOTE: this implies that $\vec{v}=\operatorname{perp}_{\mathcal{W}}(\vec{v})+\operatorname{proj}_{\mathcal{W}}(\vec{v})\left(\right.$ Draw a picture in $\mathbb{R}^{2!}$!)

Theorem 5.11

Let \mathcal{W} be a subspace of \mathbb{R}^{n} and let \vec{v} be ANY vector in \mathbb{R}^{n}. THEN there exist unique vectors \vec{w} in \mathcal{W} and \vec{w}^{\perp} in \mathcal{W}^{\perp} such that $\vec{v}=\vec{w}+\vec{w}^{\perp}$. This theorem is known as the Orthogonal Decomposition Theorem. Note: a corollary of this theorem is that $\left(\mathcal{W}^{\perp}\right)^{\perp}=\mathcal{W}$.

EXAMPLE

Consider the subspace $\mathcal{W}, x-y+2 z=0$ with the vector $\vec{\not}\left[\begin{array}{c}3 \\ -1 \\ 2\end{array}\right]$. Show that the orthogonal decomposition of \vec{v} is $\left[\begin{array}{c}3 \\ -1 \\ 2\end{array}\right]=\left[\begin{array}{c}5 / 3 \\ 1 / 3 \\ -2 / 3\end{array}\right]+\left[\begin{array}{c}4 / 3 \\ -4 / 3 \\ 8 / 3\end{array}\right]$

Theorem 5.13

Let \mathcal{W} be a subspace of \mathbb{R}^{n} then $\operatorname{dim}(\mathcal{W})+\operatorname{dim}\left(\mathcal{W}^{\perp}\right)=n$.
A corollary of Theorem 5.13 becomes clear when one applies it to the associated subspaces of a $m \times n$ matrix A. This is known as The Rank Theorem.
$\operatorname{dim}(\operatorname{row}(A))+\operatorname{dim}(\operatorname{null}(A))=n$ and $\operatorname{dim}(\operatorname{col}(A))+\operatorname{dim}\left(\operatorname{null}\left(A^{T}\right)\right)=m$
The Rank Theorem
If A is an $m \times n$ matrix, $\operatorname{then} \operatorname{rank}(A)+\operatorname{nullity}(A)=n$ and $\operatorname{rank}(A)+\operatorname{nullity}\left(A^{T}\right)=m$.
(Recall, $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$)

Let $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 1 & 1\end{array}\right]$. Which of the following vectors is orthogonal to the row space of A ?

1. $(1,1,-1)$
2. $(1,4,2)$
3. $(0,0,5)$
4. $(-1,0,1)$

CLICKER QUESTION 25.2

Let $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 1 & 1\end{array}\right]$. Which of the following vectors is orthogonal to the column space of A ?

1. $(1,1,-1)$
2. $(1,4,2)$
3. $(0,1,-2)$
4. $(2,0,2)$

CLICKER QUESTION 25.3

Let $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 1 & 1\end{array}\right]$. Which of the following vectors is orthogonal to the nullspace of A ?

1. $(1,1,-1)$
2. $(1,4,2)$
3. $(0,1,-2)$
4. $(2,0,2)$

CLICKER QUESTION 25.4

True or False Any set of nonzero orthogonal vectors must also be linearly independent.

CLICKER QUESTION 25.5

True or False The only orthonormal basis for \mathbb{R}^{2} is $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$.

CLICKER QUESTION 25.6

Let Q be a square matrix with orthonormal columns. True or False $Q^{-1}=Q^{T}$.

If $\vec{b}=\left[\begin{array}{c}3 \\ -1\end{array}\right]$ and $\vec{y}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$, then the orthogonal projection of \vec{b} onto \vec{y} is

1. $\left[\begin{array}{l}2 \\ 1\end{array}\right]$
2. $\left[\begin{array}{c}3 / 2 \\ -1 / 2\end{array}\right]$
3. $\left[\begin{array}{c}10 \\ 5\end{array}\right]$
4. $\left[\begin{array}{l}1 / 10 \\ 3 / 10\end{array}\right]$

CLICKER QUESTION 25.8

If $\vec{b}=\left[\begin{array}{c}3 \\ -1\end{array}\right]$ and l is the line $y=\frac{1}{2} x$, then the orthogonal projection of \vec{b} onto l is

1. $\left[\begin{array}{l}2 \\ 1\end{array}\right]$
2. $\left[\begin{array}{c}3 / 2 \\ -1 / 2\end{array}\right]$
3. $\left[\begin{array}{c}10 \\ 5\end{array}\right]$
4. $\left[\begin{array}{l}1 / 10 \\ 3 / 10\end{array}\right]$

CLICKER QUESTION 25.9

If l is the line $y=3 x, \vec{b} \in \mathbb{R}^{2}$, and z is the orthogonal projection of \vec{b} on l, then which of the following are true?

1. $b-z$ is perpendicular to l.
2. $b-z$ is a point on l.
3. z is of the form $(c, 3 c)$
4. Exactly two of the statements are true.
5. None of the above are true.
