Class 25

TITLE Orthogonal Complements and Orthogonal Projections

CURRENT READING Poole 5.1

Summary
We will learn about an incredibly important feature of vectors and orthogonal vector spaces.

Homework Assignment
HW#24 Poole, Section 5.2: 2,3, 4,5, 6, 7,12,15,16,17,19,20,21. EXTRA CREDIT 29.

DEFINITION
Two subspaces \(V \) and \(W \) are said to be orthogonal if every vector \(\vec{v} \in V \) is perpendicular to every vector \(\vec{w} \in W \). The orthogonal complement of a subspace \(V \) contains EVERY vector that is perpendicular to (vectors in) \(V \). This space is denoted \(V^\perp \). In other words, \(\vec{v} \cdot \vec{w} = 0 \) or \(\vec{v}^T \vec{w} = 0 \) for every \(\vec{v} \) in \(V \) and \(\vec{w} \) in \(W \).

\[
W^\perp = \{ \vec{v} \in \mathbb{R}^n : \vec{v} \cdot \vec{w} = 0 \text{ for all } \vec{w} \in W \}
\]

Example 1. Q: In \(\mathbb{R}^3 \), let \(V = \) the z-axis. What is \(V^\perp \)? A:

Q: In \(\mathbb{R}^3 \), what is the orthogonal complement of the xy-plane?
A:

Q: In \(\mathbb{R}^3 \), are the xy-plane and the yz-plane orthogonal complements of each other?
A: No, there are vectors in one plane that are not perpendicular to vectors in the other plane. (Can you find one of each?)

Q: In \(\mathbb{R}^4 \) (with axes \(x_1, x_2, x_3, x_4 \)), what is the orthogonal complement of the \(x_1x_2 \)-plane?
A:

We can summarize some of the properties of orthogonal complements.

Theorem 5.9
Let \(W \) be a subspace of \(\mathbb{R}^n \).

[a.] \(W^\perp \) is a subspace of \(\mathbb{R}^n \)

[b.] \((W^\perp)^\perp = W \)

[c.] \((W^\perp) \cap W = \vec{0} \)

[d.] If \(W = \text{span}(\vec{w}_1, \vec{w}_2, \vec{w}_3, \ldots, \vec{w}_n) \) then \(\vec{v} \) is in \(W^\perp \) only if \(\vec{v} \cdot \vec{w}_i = 0 \) for every \(\vec{w}_i \) in \(W \) for \(i = 1 \ldots n \)

These features can be described using the associated subspaces of an \(m \times n \) matrix \(A \).

Theorem 5.10
Let \(A \) be an \(m \times n \) matrix. Then the orthogonal complement of the row space of \(A \) is the null space of \(A \). The orthogonal complement of the column space of \(A \) is the null space of \(A^T \) (sometimes called the left null space). Mathematically, this can be written:

\[
(\text{row}(A))^\perp = \text{null}(A) \quad \text{and} \quad (\text{col}(A))^\perp = \text{null}(A^T)
\]

These four subspaces are called the fundamental subspaces of the matrix \(A \).
This page will have a reproduction of a diagram of the relationship of the four fundamental subspaces from Gilbert Strang's *Linear Algebra* textbook.
EXAMPLE

Let’s find bases for the four fundamental subspaces of the matrix \(A = \begin{bmatrix} 1 & 1 & 3 & 1 & 6 \\ 2 & -1 & 0 & 1 & -1 \\ -3 & 2 & 1 & -2 & 1 \\ 4 & 1 & 6 & 1 & 3 \end{bmatrix} \).

Suppose we know that \(\text{rref}(A) = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 6 \\ 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \) and \(\text{rref}(A^T) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \). Write down the dimensions of each fundamental subspace and describe the subspace-orthogonal complement pairs.

DEFINITION

Let \(\mathcal{W} \) be a subspace of \(\mathbb{R}^n \) and let \(\{ \vec{w}_1, \vec{w}_2, \vec{w}_3, \ldots, \vec{w}_n \} \) be an orthogonal basis for \(\mathcal{W} \). For any vector \(\vec{v} \) in \(\mathbb{R}^n \), the orthogonal project of \(\vec{v} \) onto \(\mathcal{W} \) is defined as

\[
\text{proj}_{\mathcal{W}}(\vec{v}) = \sum_{j=1}^{n} \text{proj}_{\vec{w}_j}(\vec{v}) = \sum_{j=1}^{n} \frac{\vec{v} \cdot \vec{w}_j}{\vec{w}_j \cdot \vec{w}_j} \vec{w}_j
\]

The component of \(\vec{v} \) orthogonal to \(\mathcal{W} \) is the vector \(\text{perp}_{\mathcal{W}}(\vec{v}) = \vec{v} - \text{proj}_{\mathcal{W}}(\vec{v}) \)

NOTE: this implies that \(\vec{v} = \text{perp}_{\mathcal{W}}(\vec{v}) + \text{proj}_{\mathcal{W}}(\vec{v}) \) (Draw a picture in \(\mathbb{R}^2 \! \)!)
Theorem 5.11
Let \(W \) be a subspace of \(\mathbb{R}^n \) and let \(\vec{v} \) be ANY vector in \(\mathbb{R}^n \). THEN there exist unique vectors \(\vec{w} \) in \(W \) and \(\vec{w}^\perp \) in \(W^\perp \) such that \(\vec{v} = \vec{w} + \vec{w}^\perp \). This theorem is known as the **Orthogonal Decomposition Theorem**. Note: a corollary of this theorem is that \((W^\perp)^\perp = W \).

EXAMPLE
Consider the subspace \(W, x - y + 2z = 0 \) with the vector \(\vec{v} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} \). Show that the orthogonal decomposition of \(\vec{v} \) is
\[
\begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5/3 \\ 1/3 \\ -2/3 \end{bmatrix} + \begin{bmatrix} 4/3 \\ -4/3 \\ 8/3 \end{bmatrix}
\]

Theorem 5.13
Let \(W \) be a subspace of \(\mathbb{R}^n \) then \(\dim(W) + \dim(W^\perp) = n \).

A corollary of Theorem 5.13 becomes clear when one applies it to the associated subspaces of a \(m \times n \) matrix \(A \). This is known as the **Rank Theorem**.
\[
\dim(\text{row}(A)) + \dim(\text{null}(A)) = n \text{ and } \dim(\text{col}(A)) + \dim(\text{null}(A^T)) = m
\]

The Rank Theorem
If \(A \) is an \(m \times n \) matrix, then \(\text{rank}(A) + \text{nullity}(A) = n \) and \(\text{rank}(A) + \text{nullity}(A^T) = m \).

(Recall, \(\text{rank}(A) = \text{rank}(A^T) \))
CLICKER QUESTION 25.1

Let \(A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 1 & 1 \end{bmatrix} \). Which of the following vectors is orthogonal to the row space of \(A \)?

1. (1, 1, −1)
2. (1, 4, 2)
3. (0, 0, 5)
4. (−1, 0, 1)

CLICKER QUESTION 25.2

Let \(A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 1 & 1 \end{bmatrix} \). Which of the following vectors is orthogonal to the column space of \(A \)?

1. (1, 1, −1)
2. (1, 4, 2)
3. (0, 1, −2)
4. (2, 0, 2)

CLICKER QUESTION 25.3

Let \(A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 1 & 1 \end{bmatrix} \). Which of the following vectors is orthogonal to the nullspace of \(A \)?

1. (1, 1, −1)
2. (1, 4, 2)
3. (0, 1, −2)
4. (2, 0, 2)

CLICKER QUESTION 25.4

True or False Any set of nonzero orthogonal vectors must also be linearly independent.

CLICKER QUESTION 25.5

True or False The only orthonormal basis for \(\mathbb{R}^2 \) is \(\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \).

CLICKER QUESTION 25.6

Let \(Q \) be a square matrix with orthonormal columns. **True or False** \(Q^{-1} = Q^T \).
CLICKER QUESTION 25.7

If $\vec{b} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, then the orthogonal projection of \vec{b} onto \vec{y} is

1. $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$
2. $\begin{bmatrix} 3/2 \\ -1/2 \end{bmatrix}$
3. $\begin{bmatrix} 10 \\ 5 \end{bmatrix}$
4. $\begin{bmatrix} 1/10 \\ 3/10 \end{bmatrix}$

CLICKER QUESTION 25.8

If $\vec{b} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ and l is the line $y = \frac{1}{2}x$, then the orthogonal projection of \vec{b} onto l is

1. $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$
2. $\begin{bmatrix} 3/2 \\ -1/2 \end{bmatrix}$
3. $\begin{bmatrix} 10 \\ 5 \end{bmatrix}$
4. $\begin{bmatrix} 1/10 \\ 3/10 \end{bmatrix}$

CLICKER QUESTION 25.9

If l is the line $y = 3x$, $\vec{b} \in \mathbb{R}^2$, and z is the orthogonal projection of \vec{b} on l, then which of the following are true?

1. $b - z$ is perpendicular to l.
2. $b - z$ is a point on l.
3. z is of the form $(c, 3c)$
4. Exactly two of the statements are true.
5. None of the above are true.