$\mathbf{L}_{\text {inear }} \mathbf{S}_{\text {ystems }}$

Fowler 309 MWF 9:30 am - 10:25 am http://faculty.oxy.edu/ron/math/214/08/

Class 21: Wednesday March 26

TITLE Determinants

CURRENT READING Poole 4.2

Summary

Let's understand how to compute the determinant of a $n \times n$ matrix and understand the properties and applictations of determinants.

Homework Assignment

HW \#20 Poole, Section 4.2: 4,6, 7, 10, 15, 26, 27, 32, 33, 48, 49,50,51,52. EXTRA CREDIT 46.

DEFINITION

Let A be any matrix. The $i j$-minor of A is the matrix obtained by removing its i th row and its j th column. It is denoted by $\hat{A}_{i j}$.

Theorem 4.1

Let A be any n by n matrix. The determinant of A is defined as:
If $n=1$, then $|A|=A_{11}$.
If $n \geq 2$, then
$|A|=A_{11}\left|\hat{A}_{11}\right|-A_{12}\left|\hat{A}_{12}\right|+\cdots+A_{1 n}\left|\hat{A}_{1 n}\right|$
More general definition: Fix any row i. Then,

$$
|A|=\sum_{j=1}^{n} A_{i j}(-1)^{i+j}\left|\hat{A}_{i j}\right|=\sum_{j=1}^{n} A_{i j} C_{i j}
$$

Or, fix any column j. Then,

$$
|A|=\sum_{i=1}^{n} A_{i j}(-1)^{i+j}\left|\hat{A}_{i j}\right|=\sum_{i=1}^{n} A_{i j} C_{i j}
$$

Although it may seem like it, this definition is not really a "circular" definition.
It's known as a recursive definition. The formula is called the Laplace Expansion Theorem. The number $C_{i j}=(-1)^{i+j}\left|\hat{A}_{i j}\right|$ is known as the i, j-cofactor of A.

EXAMPLE

Let's compute the determinant of $\left[\begin{array}{lll}1 & 4 & 2 \\ 3 & 5 & 1 \\ 0 & 1 & 2\end{array}\right]$.
Ans: $\left|\begin{array}{lll}1 & 4 & 2 \\ 3 & 5 & 1 \\ 0 & 1 & 2\end{array}\right|=1(10-1)-4(6-0)+2(3-0)=-9$

Compute the determinant of the matrix $\left[\begin{array}{ccc}1 & 4 & 2 \\ 3 & 5 & 1 \\ 0 & 1 & 2\end{array}\right]$ using a different row and column

1. Properties of the Determinant of a Matrix

Here is a summary of the various properties of the determinant.

1. The determinant is a linear function of each row, separately.
2. The determinant changes sign when two rows are exchanged.
3. The determinant of the n by n identity matrix is 1 .
4. If two rows of A are equal, then $\operatorname{det} A=0$.
5. Subtracting a multiple of one row from another row leaves $\operatorname{det} A$ unchanged.
6. A matrix with a row of zeros has $\operatorname{det} A=0$.
7. If A is a triangular matrix the $\operatorname{det} A$ equals the product of the main diagonal entries.
8. If A is singular then $\operatorname{det} A=0$. If A is invertible then $\operatorname{det} A \neq 0$.
9. The determinant of $A B$ is the product of the separate determinants: $|A B|=|A||B|$.
10. The transpose A^{T} has the same determinant as A.

2. Applications of the Determinant

Theorem 4.7
If A is a n by n matrix then $|k A|=k^{n}|A|$
Theorem 4.9
If A is an invertible n by n matrix then $\left|A^{-1}\right|=\frac{1}{|A|}$

EXAMPLE

The sum of the determinant of two matrices is NOT equal to the determinant of the sum of two matrices, i.e. $|A+B| \neq|A|+|B|$. Let's prove this.

Cramer's Rule

Suppose we're given a linear system of equations $A \vec{x}=\vec{b}$, where A and \vec{b} are given, and we are to find \vec{x}. We have learned how to solve this using Gaussian Elimination. A longer way to find \vec{x} is as follows! Theorem (Cramer's Rule) Given $A \vec{x}=\vec{b}$, the j th coordinate of \vec{x} is given by the formula

$$
x_{j}=\frac{\operatorname{det}\left(B_{j}\right)}{\operatorname{det}(A)}
$$

where B_{j} is obtained by replacing the j-th column of A by \vec{b}.
Example 1. Solve the system $\begin{gathered}2 x+4 y=1 \\ x+3 y=2\end{gathered}$ using Cramer's Rule.
Ans:

Cramer's Rule takes a lot more work than Gaussian Elimination to solve a system. So why is it useful? I think because it gives us a formula for the solution, as opposed to Elimination, which is only a procedure for finding the solution.

Theorem If A is an invertible matrix, then A^{-1} is given by

$$
\left(A^{-1}\right)_{i, j}=\frac{C_{j, i}}{\operatorname{det}(A)}
$$

where $C_{j, i}$ is the cofactor of $A_{j, i}$.
Find the inverse of $\left[\begin{array}{lll}2 & 6 & 2 \\ 0 & 4 & 2 \\ 5 & 9 & 0\end{array}\right]$ using the co-factor formula

The vector cross product

Definition 1. Let \vec{u} and \vec{v} be vectors in \mathbb{R}^{3}. Their cross product is defined as $\vec{u} \times \vec{v}=\operatorname{det}\left[\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right]$.
Note. $\hat{i}=(1,0,0), \hat{j}=(0,1,0)$, and $\hat{k}=(0,0,1)$. These are unit vectors. But in computing the above determinant, just treat them as symbols or numbers. Note: the result of a cross-product is a vector which is orthogonal (perpendicular) to both vectors in the product. (Where could this be useful?)

Use the cross-product to find the general equation $A x+B y+C z=D$ of the plane in \mathbb{R}^{3} which is the $\operatorname{span}\left(\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 1 \\ 3\end{array}\right]\right)$

Interesting Fact: $\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \| \sin \left(\theta_{u v}\right) \mid$ where $\theta_{u v}$ is the angle between the vectors \vec{u} and \vec{v}. This should remind you of $|\vec{u} \cdot \vec{v}|=\left\|\vec{u}\left|\left\|\left|\vec{v} \|| | \cos \left(\theta_{u v}\right)\right.\right.\right.\right.$.

