$\mathbf{L i n e a r} \mathbf{S}_{\text {ystems }}$

Class 20: Monday March 24

TITLE Introducton to Eigenvectors and Eigenvalues
CURRENT READING Poole 4.1

Summary

Let's explore the wonderful world of eigenvectors, eigenvalues and eigenspaces of a square 2 x 2 matrix.

Homework Assignment
HW \#19 Poole, Section 4.1: 4,5,6,10,11,16,17,21,22. EXTRA CREDIT 36, 37

DEFINITION

An eigenvalue of a $n \times n$ matrix A is a scalar value λ such that there exists a non-zero vector \vec{x} where $A \vec{x}=\lambda \vec{x}$. The vector \vec{x} is called the eigenvector corresponding to the eigenvalue λ.

1. Eigenvalues and Eigenvectors

Interestingly, in order to find the eigenvalues of a matrix, one just has to solve the equation $A \vec{x}-\lambda \vec{x}=\overrightarrow{0}$ or $(A-\lambda I) \vec{x}=\overrightarrow{0}$.
This means that the eigenvectors of matrix A corresponding to eigenvalue λ lie in the nullspace of the matrix $A-\lambda I$. It's not clear right now, but it turns out that the eigenvalues of A are the solution of the equation $\operatorname{det}(A-\lambda I)=0$. This equation is known as the characteristic polynomial of the matrix A.

EXAMPLE

Find the eigenvalues and eigenvectors of $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$
2. Eigenvectors and Eigenspace

DEFINITION
Given a $n \times n$ matrix A with eigenvalue λ the set of all vectors corresponding to the eigenvalue λ plus the zero vector is called the eigenspace of λ and is denoted E_{λ}.

Exercise

Write down the eigenspaces associated with the eigenvalues of $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$

EXAMPLE

Consider the matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Let's show that the eigenvalues of A are the solution of $\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)=0$.

3. Properties of the Eigenvalues of a Matrix

The Product of the eigenvalues equals the determinant of the matrix.

$$
\lambda_{1} \lambda_{2}=|A|
$$

The Sum of the eigenvalues equals the trace of the matrix (the sum of the diagonal entries)

$$
\lambda_{1}+\lambda_{2}=\sum_{i=1}^{2} A_{i i}
$$

