$\mathbf{L}_{\text {inear }} \mathbf{S}_{\text {ystems }}$

Class 14: Monday February 25

SUMMARY LU Decomposition and Permutation Matrices

CURRENT READING Poole 3.4

Summary

We have found that we could (sometimes) find a matrix A^{-1} which converted A into the identity matrix I, on multiplication. We had also previously shown that we could find a series of $E_{i j}$ matrices which when multiplied in sequence would convert A into an upper triangular matrix. Today we will attempt to regularize this process and show we can use these ideas to factor a matrix A into the product of a lower triangular matrix L and upper triangular matrix U.

Homework Assignment

HW \# 14: Section 3.4: 1,2,3,7,8,9,10,13,19,20. EXTRA CREDIT 26.

1. LU Factorization

Consider the matrix $A=\left[\begin{array}{ccc}2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7\end{array}\right]$
Can you show that this can be converted into upper triangular form by multiplying by a series of matrices E_{21}, E_{31} and E_{32} ?
$U=\left[\begin{array}{ccc}2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4\end{array}\right]$
We have that $E_{32} E_{31} E_{21} A=U$
This means that
$A=E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} U=L \cdot U$

Write down the elimination matrices you used to convert A into U

Write down the INVERSE of each of these three matrices.

Note that all of these matrices $E_{21}, E_{31}, E_{32}, E_{21}^{-1}, E_{31}^{-1}$ and E_{32}^{-1} are all LOWER TRIANGULAR. Compute the product $E_{21}^{-1} E_{31}^{-1} E_{32}^{-1}$. It is ALSO lower triangular. We call it L.

Now check that the product of L and U is, in fact, A.

The Point

We can use $L U$ factorization to assist us in solving $A \vec{x}=\vec{b}$
$L U \vec{x}=b$ becomes the two systems of $L \vec{y}=\vec{b}$ and $U \vec{x}=\vec{y}$

Solving a lower triangular system and then an upper triangular system is much more computationally efficient than finding A^{-1}.
Let's do an example with $\vec{b}=\left[\begin{array}{c}2 \\ 8 \\ 10\end{array}\right]$ and our given $A=\left[\begin{array}{ccc}2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4\end{array}\right]$
2. Permutation Matrices $\mathrm{An} n \times n$ permutation matrix P has the rows of the $n \times n$ identity matrix I in any order. in other words it has exactly one 1 in each row and column.
Clearly, there are n ! permutation matrices of order n. (Think about how you would prove this.)
Permutation matrices have the property that $P^{T}=P^{-1}$.
Grouphork
Write down the 2 ! matrices of order 2 (i.e. of dimension 2×2)

Write down the 3 ! matrices of order 3

Exercise

Choose any one of your permutation matrices of order 3 from above and confirm that it has the property that $P^{T}=P^{-1}$.

