$\mathbf{L i n e a r} \mathbf{S}_{\text {ystems }}$

Math 214 Spring 2008
(C)2008 Ron Buckmire

Fowler 309 MWF 9:30 am - 10:25 am
http://faculty.oxy.edu/ron/math/214/08/

SUMMARY Matrix Algebraic Operations

CURRENT READING Poole 3.2

Summary

Let's do math with matrices. Yay. We'll summarize our knowledge of algebraic properties of matrices.

Homework Assignment

HW \# 11: Section 3.2: 1,2,3,4,5,14,24,37, 44; EXTRA CREDIT \# 45, 46 DUE WED FEB 20

1. Algebraic Properties of Matrix Addition and Scalar Multiplication

Let A, B and C be matrices of size $m \times n$ and let O be the zero matrix of size $m \times n$. Let c and d be scalars.
(1) $A+B=B+A$ (Commutativity of Addition)
(2) $A+O=A$ (Existence of Additive Identity)
(3) $A+(-A)=O$ (Existence of Additive Inverse)
(4) $c(A+B)=c A+c B$ (Distributivity of Scalar Multiplication)
(5) $(c+d) A=c A+d A$ (Distributivity of Scalar Addition)
(6) $(c d) A=c(d A)$ (Distributivity of Scalar Multiplication)

2. Algebraic Properties of Matrix Multiplication

(1) $A(B C)=(A B) C$ (Associativity of Matrix Multiplication)
(2) $A(B+C)=A B+A C$ (Distributivity of Left Matrix Multiplication)
(3) $(A+B) C=A C+B C$ (Distributivity of Right Matrix Multiplication)
(4) $k(A B)=(k A) B=A(k B)$ (Associativity of Scalar Multiplication)
(5) $I_{m} A=A=A I_{n}$ (Existence of Multiplicative Identity)
(6) $(c d) A=c(d A)$ (Distributivity of Scalar Multiplication)
(7) $1 A=A$ (Existence of Multiplicative Identity)

Exercise

Is $(A+B)^{2}=A^{2}+2 A B+B^{2}$ for all matrices A and B ? Prove your answer!

3. Linear Independence and Span With Matrices

Recall we previously defined the concepts of linear independence and span involving vectors in \mathbb{R}^{n}. GroupWork
Write down a one sentence definition in YOUR OWN WORDS explaining linear independence and span.
Linear Independence

Span

EXAMPLE
Consider $A_{1}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right], A_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $A_{3}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. Are these matrices linearly independent? What is the span of these matrices?

If $A=\left[\begin{array}{ccc}2 & 3 & 1 \\ 0 & -1 & 3 \\ -2 & 0 & 4\end{array}\right]$ what is A^{T} ?
A. $A^{T}=\left[\begin{array}{ccc}2 & 3 & 1 \\ 0 & -1 & 3 \\ -2 & 0 & 4\end{array}\right]$
B. $A^{T}=\left[\begin{array}{ccc}2 & 0 & -2 \\ 3 & -1 & 0 \\ 1 & 3 & 4\end{array}\right]$
C. $A^{T}=\left[\begin{array}{ccc}-2 & 0 & 4 \\ 0 & -1 & 3 \\ 2 & 3 & 1\end{array}\right]$
D. $A^{T}=\left[\begin{array}{ccc}1 & 3 & 4 \\ 3 & -1 & 0 \\ 2 & 0 & -2\end{array}\right]$

CLICKER QUESTION 11.2

If $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right]$ and $B=\left[\begin{array}{c}4 \\ -1\end{array}\right]$ then calculate the product $A B$.
A. $A B=\left[\begin{array}{l}5 \\ 2\end{array}\right]$
B. $A B=\left[\begin{array}{ll}10 & 7\end{array}\right]$
C. $A B=\left[\begin{array}{cc}8 & 4 \\ -3 & -2\end{array}\right]$
D. $A B=\left[\begin{array}{c}7 \\ 10\end{array}\right]$
E. None of the above.
F. This matrix multiplication is impossible.

CLICKER QUESTION 11.3

If A and B are both 2×3 matrices, then which of the following is not defined?
A. $A+B$
B. $A^{T} B$
C. $B A$
D. $A B^{T}$
E. More than one of the above
F. All of these are defined.

Calculate $\left[\begin{array}{cc}2 & 0 \\ -3 & 1\end{array}\right] \times\left[\begin{array}{cc}0 & -1 \\ 2 & 2\end{array}\right]$.
A. $\left[\begin{array}{cc}3 & -1 \\ -2 & 2\end{array}\right]$
B. $\left[\begin{array}{cc}0 & -2 \\ 2 & 5\end{array}\right]$
C. $\left[\begin{array}{cc}0 & 0 \\ -6 & 2\end{array}\right]$
D. None of the above.
E. This matrix multiplication is impossible.

CLICKER QUESTION 11.5

In order to compute the matrix product $A B$, what must be true about the sizes of A and B ?
A. A and B must have the same number of rows.
B. A and B must have the same number of columns.
C. A must have as many rows as B has columns.
D. A must have as many columns as B has rows.

CLICKER QUESTION 11.6

If $A=\left[\begin{array}{ccc}2 & 3 & 1 \\ 0 & -1 & 3 \\ -2 & 0 & 4\end{array}\right]$ and $B=\left[\begin{array}{ccc}3 & 0 & 2 \\ 1 & 2 & -1 \\ 3 & 1 & 0\end{array}\right]$ what is the $(3,2)$-entry of $A B$?
(You should be able to determine this without computing the entire matrix product.)
A. 1
B. 3
C. 4
D. 8

