Linear Systems

Math 214 Spring 2008 (c)2008 Ron Buckmire

Fowler 309 MWF 9:30 am - 10:25 am http://faculty.oxy.edu/ron/math/214/08/

Class 10: Wednesday February 13

SUMMARY Matrix Properties

CURRENT READING Poole 3.1

Summary

We begin our study of Chapter 3 by considering matrices as objects in their own right, and not just as ways of viewing, or parts of, linear systems.

Homework Assignment

HW # 10: Section 3.1: 1,2,3,4,5,6,7, 8, 23, 24, 35. EXTRA CREDIT 37: DUE FRI FEB 15

1. Matrix Definitions

DEFINITION

Let A be an $m \times n$ matrix (with m rows and n columns). If m = n, then A is said to be a square matrix. For $1 \le i \le m$ and $1 \le j \le n$, the (i, j)-entry of A, denoted by $A_{i, j}$, is the number in the ith row and the jth column of A. We denote the ith row of A by $\mathbf{row}_i(A)$, and the jth column of A by $\mathbf{col}_j(A)$.

Note. For convenience, some books, including ours, drop the comma from $A_{i,j}$, and instead write A_{ij} . You may do this too, except when it can cause ambiguity, as in: $A_{123} = A_{12,3}$ or $A_{1,23}$?

Q: An m-component column vector is a ? \times ? matrix? **A:**

Q: An *n*-component row vector is a $?\times?$ matrix? **A:**

DEFINITION: matrix addition

Let A and B be $m \times n$ matrices. Then their sum A+B is an $m \times n$ matrix C defined by: $C_{i,j} = A_{i,j} + B_{i,j}$.

Example 1. Compute
$$B+A$$
, where $A=\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$, $B=\begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$.

DEFINITION: matrix dimension

Let A and B be $m \times n$ matrices. Then A is said to be equal to B if both A and B have the same dimensions and if $A_{i,j} = B_{i,j}$ for every i and j in each matrix.

Example 2. **Q:** Are the
$$\begin{bmatrix} 1 & 0 & -3 \end{bmatrix}$$
 and $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ equal? **A:** No! (Why not?)

DEFINITION: scalar multiplication

Let A be a $m \times n$ matrix and c is a real number. Then cA is said to a scalar multiple of A and cA is obtained by multiplying each element of A by c.

DEFINITION: zero matrix

Let O be a $m \times n$ matrix called the **zero matrix** where every entry equals zero. Clearly, A + O = O + A = A and A - A = -A + A = O. The zero matrix acts like the matrix "additive identity" also known as the number "zero."

2. Matrix Multiplication

We add matrices component-wise: $(A+B)_{i,j} = A_{i,j} + B_{i,j}$. But we do not multiply matrices component-wise: $(AB)_{i,j} \neq A_{i,j}B_{i,j}$ (just as vector addition is component-wise, but the dot product isn't).

DEFINITION: matrix multiplication

Let A be an $m \times n$ matrix, and B an $n \times q$ matrix. Then their **product** AB is an $m \times q$ matrix C defined by $C_{i,j} = \text{row}_i(A) \cdot \text{col}_j(B)$. (Equivalently, C can be defined by: $\text{col}_j(C) = A \text{col}_j(B)$.)

Example 3. Compute BA, where $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$.

Q: What type of matrix can be multiplied by itself? **Ans:** A square matrix.

Notation: $AA = A^2, AAA = A^3, \cdots$. Also, note that $A^rA^s = A^{r+s}$ and $(A^r)^s = A^{rs}$ when r and s are non-negative integers.

Example 4. Compute A^2 and A^3

DEFINITION: identity matrix

The $n \times n$ identity matrix I or I_n is a square matrix defined to have 1's along its diagonal, and 0's elsewhere. The identity matrix acts like the matrix "multiplicative identity" also known as the number "one." Clearly, AI = IA = A.

DEFINITION: inverse matrix

Two $n \times n$ matrices A and B are said to be **inverses** of each other if $AB = I_n$ and $BA = I_n$.

3. Matrix Transposes

$\begin{tabular}{ll} \bf DEFINITION:\ transpose \\ \end{tabular}$

Given a matrix A, the transpose matrix is denoted A^T . The rows of A become the columns of A^T . If A is $m \times n$ then A^T is $n \times m$. Specifically, $A_{ij}^T = A_{ji}$.

2

4. Properties of the Transpose

$$\bullet \ (A^T)^T = A$$

$$\bullet \ (A+B)^T = A^T + B^T$$

$$\bullet \ (AB)^T = B^T A^T$$

$$(cA)^T = cA^T$$

•
$$(A^r)^T = (A^T)^r$$
 for non-negative integers r

• Recall that $A\vec{x}$ is a linear combination of the **columns** of A, so x^TA^T is a linear combination of the ROWS of A^T

Exercise

Confirm the above transpose properties with $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$.

5. Symmetric Matrices

${\bf DEFINITION:\ symmetric}$

A matrix is said to be *symmetric* if its transpose is itself, i.e. $A^T = A$.

The inverse of a symmetric matrix is also symmetric. i.e $A^T = A \Leftrightarrow (A^{-1})^T = A^{-1}$.

The product of a matrix with its transpose produces a symmetric matrix. $(R^TR)^T = R^T(R^T)^T = R^TR$

6. Block Matrices (Optional Material)

Consider
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
 and $B = \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \end{bmatrix}$

Exercise

Write down AB in terms of the elements of A and B.

Now, suppose the elements of A and B are themselves matrices!

$$A_{11} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } A_{12} = \begin{bmatrix} 2 & -1 \\ 1 & 3 \\ 4 & 0 \end{bmatrix} \text{ and } A_{21} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } A_{22} = \begin{bmatrix} 1 & 7 \\ 7 & 2 \end{bmatrix}$$

$$B_{11} = \begin{bmatrix} 4 & 3 \\ -1 & 2 \\ 1 & -5 \end{bmatrix}, B_{12} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 3 \end{bmatrix}, B_{13} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, B_{21} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, B_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ and } B_{23} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Now compute AB block by block. First check that matrix A and B are **partitioned conformably for block multiplication**. (In other words, that in every possibly matrix multiplication the dimensions match up properly.)

CLICKER QUESTION 10.1

What is the solution to the following system of equations?

$$x + 2y + z = 0$$

$$x + 3y - 2z = 0$$

A.
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -7 \\ 3 \\ 1 \end{bmatrix} s$$

B.
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 \\ -3 \\ 1 \end{bmatrix} s$$

C.
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 \\ -3 \\ 0 \end{bmatrix}$$

D.
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -7 \\ 3 \\ 0 \end{bmatrix}$$

- E. None of the above.
- F. More than one of the above.

CLICKER QUESTION 10.2

What is the solution to the following system of equations?

$$x + 2y + z = 3$$

$$x + 3y - 2z = 4$$

A.
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} s$$

B.
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix} + \begin{bmatrix} -7 \\ 3 \\ 1 \end{bmatrix} s$$

C.
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} -7 \\ 3 \\ 1 \end{bmatrix} s$$

- D. None of the above.
- E. More than one of the above.

CLICKER QUESTION 10.3

Suppose \vec{y} and \vec{z} are both solutions to $A\vec{x} = \vec{b}$. True or False All linear combinations of y and z also solve $A\vec{x} = \vec{b}$. (You should be prepared to support your answer with either a proof or a counterexample.)

- A. TRUE.
- B. FALSE.

CLICKER QUESTION 10.4

Suppose \vec{y} and \vec{z} are both solutions to $A\vec{x} = \vec{0}$. True or False All linear combinations of y and z also solve $A\vec{x} = \vec{0}$. (You should be prepared to support your answer with either a proof or a counterexample.)

- A. TRUE.
- B. FALSE.

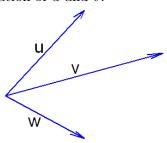
CLICKER QUESTION 10.5

Which set of vectors is linearly independent?

- A. (2,3),(8,12)
- B. (1,2,3), (4,5,6), (7,8,9)
- C. (-3, 1, 0), (4, 5, 2), (1, 6, 2)
- D. None of these sets are linearly independent.
- E. Exactly two of these sets are linearly independent.
- F. All of these sets are linearly independent.

CLICKER QUESTION 10.6

Write the vector w as a linear combination of u and v.



- A. w = 2u + v
- B. w = u + v
- C. w = -u + v
- D. w = u v
- E. w cannot be written as a linear combination of u and v.