Linear Systems

Math 214 Spring 2008 ©2008 Ron Buckmire Fowler 309 MWF 9:30 am - 10:25 am http://faculty.oxy.edu/ron/math/214/08/

Class 2: Friday January 25

SUMMARY Lengths and Dot Products **CURRENT READING** Poole 1.2

RECALL

Previously we have discussed addition and scalar multiplication of vectors, primarily in the form of linear combinations of vectors. Today we're going to think about *multiplication* of vectors. As with most topics in this course, there's an algebraic view and a geometric (graphical) view of understanding this concept.

Homework Assignment #2 Section 1.2 # 2,5, 11, 17, 19, 25, 44, 46, 47, 52: DUE MON JAN 28

Consider the vectors
$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 and $\vec{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$

1. The Dot Product

 $\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2$

Note this product is a scalar, not a vector. The dot product operation IS commutative. Can you PROVE this?

Also, interestingly $\vec{v} \cdot \vec{v} = v_1 v_1 + v_2 v_2 = v_1^2 + v_2^2$

the above formula should remind you of the expression for the length or magnitude of a vector \vec{v} , which is usually denoted $||\vec{v}||$

So,

$$||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}}$$

2. Normalization

Oftentimes we want to work with vectors of unit length. These vectors are called *normalized*.

Suppose $\vec{w} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$ How can we normalize \vec{w} so that it has the same direction, but magnitude 1?

3. Orthogonality.

Suppose $\vec{a} \cdot \vec{b} = 0$ what can we say about \vec{a} and \vec{b} ?

Consider
$$\vec{a} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \vec{b} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

AND

$$\vec{a} = \begin{bmatrix} 2\\3 \end{bmatrix}, \vec{b} = \begin{bmatrix} -6\\4 \end{bmatrix}$$

AND

$$\vec{a} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \vec{b} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$

Do you notice a pattern among these vectors? What properties do the vector pairs share?

4. Angle Between Vectors.

Consider the vectors $\vec{v} = \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} \cos \beta \\ \sin \beta \end{bmatrix}$ $\vec{v} \cdot \vec{w} =$

Can you rewrite this formula using a trigonometric identity?

Draw
$$\vec{a} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\vec{b} = \begin{bmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}$ on an axes.

- 1. What is the dot product between them?
- 2. What is the angle between them?
- 3. What is the angle between \vec{a} and $2\vec{b}$?
- 5. Angle Formula. For any vectors \vec{v} and \vec{w} where θ is the smaller angle between them,

$$\cos\theta = \frac{\vec{v}\cdot\vec{w}}{||\vec{v}|||\vec{w}||}$$

How can we use this formula to confirm our understanding of orthogonality? (i.e. what happens when the dot product between two vectors is zero?)

6. Projection. For any vectors \vec{u} and \vec{v} where $\vec{u} \neq 0$ then the projection of \vec{v} onto \vec{u} is the vector $\operatorname{proj}_{\vec{u}}(\vec{v})$ defined by:

$$\operatorname{proj}_{\vec{u}}(\vec{v}) = \left(\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}\right) \vec{u}$$