$\mathbf{L i n e a r} \mathbf{S}_{\text {ystems }}$

Fowler 309 MWF 9:30 am - 10:25 am
http://faculty.oxy.edu/ron/math/214/08/

Class 1: Wednesday January 23
SUMMARY Scalars and Vectors
CURRENT READING Poole 1.1 and 1.2

INTRO

In today's class we review the concepts of vectors and scalars. In addition, we introduce the central idea of a linear combination of vectors.

Homework Assignment \#1

Section 1.1 \# 1d, 2d, 3c, 4c, 5a, 6, 9, 11, 15, 17, 20 : DUE FRI JAN 26
EXTRA CREDIT \#14

1. What is a vector?

Roughly speaking, a vector is just a "bunch of numbers"!
More precisely, a vector is an ordered set of numbers.
Example 1. $\left[\begin{array}{ll}2 & 0\end{array}\right]$ is a vector; $\left[\begin{array}{ll}0 & 2\end{array}\right]$ is also; these are two different vectors, since order matters.
$\left[\begin{array}{lll}2 & -5 & 7.1\end{array}\right]$ is a row vector; $\left[\begin{array}{c}2 \\ -5 \\ 7.1\end{array}\right]$ is a column vector.
Q: What's the difference between a row vector and a column vector?
Note. To save space, we sometimes write $(4,0,-8)$ instead of $\left[\begin{array}{c}4 \\ 0 \\ -8\end{array}\right]$. So $(4,0,-8)$ is a column vector.
Each number in the vector is called a component of the vector.
Q: What's the second component of the vector $\left[\begin{array}{ll}3 & 6\end{array}\right]$? Ans:

2. Vectors can be used to represent many different things!

Example 2. Start from home. Drive 6 miles East, 2 miles North. Represent this by the vector [6 2].
Then continue driving 3 miles East, 5 miles South. Represent this by $\left[\begin{array}{ll}3 & -5\end{array}\right]$.
Q: Where are we relative to home?
Ans: Add the two vectors: $\left[\begin{array}{ll}6 & 2\end{array}\right]+\left[\begin{array}{ll}3 & -5\end{array}\right]=\left[\begin{array}{ll}9 & -3\end{array}\right]$.

NOTE Vectors are added component-wise: one component at a time.

Example 3. I have 4 nickels, 3 dimes, and 2 quarters. You give me 3 nickels and 1 dime, and take 1 quarter. So I'm left with: $\left[\begin{array}{lll}4 & 3 & 2\end{array}\right]+\left[\begin{array}{lll}3 & 1 & -1\end{array}\right]=\left[\begin{array}{lll}7 & 4 & 1\end{array}\right]$.

A Note on Notation

The book uses boldface letters for vectors. It is difficult to write in boldface. So instead we'll use "arrow notation" for vectors:
Book: Let $\mathbf{v}=\left[\begin{array}{ll}4 & 3\end{array}\right]$. Let $\mathbf{w}=\left[\begin{array}{ll}5 & 3\end{array}\right]$. Then $\mathbf{v}+\mathbf{w}=$?
Us: Let $\vec{v}=\left[\begin{array}{ll}4 & 3\end{array}\right] . \vec{w}=\left[\begin{array}{ll}5 & 3\end{array}\right]$. Then $\vec{v}+\vec{w}=$?
Example 4. $\left[\begin{array}{ll}4 & 2\end{array}\right]+\left[\begin{array}{lll}3 & 1 & -1\end{array}\right]=$?Ans: Undefined.
NOTE Vectors of different size can NOT be added to each other.

3. Multiplying a vector by a number: scalars

What's $5+5+5+5+5+5=$?
What's $\left[\begin{array}{ll}5 & 3\end{array}\right]+\left[\begin{array}{ll}5 & 3\end{array}\right]+\left[\begin{array}{ll}5 & 3\end{array}\right]+\left[\begin{array}{ll}5 & 3\end{array}\right]+\left[\begin{array}{ll}5 & 3\end{array}\right]+\left[\begin{array}{ll}5 & 3\end{array}\right]=$?
So, what's $6[53]=$? Ans:
Here the number 6 is called a scalar. Why? Because if you draw both vectors, [$\left.\begin{array}{ll}5 & 3\end{array}\right]$ and $\left[\begin{array}{ll}30 & 18\end{array}\right]$, on two separate $x y$-planes, they'll have different lengths but the same direction (slope): we're only changing the "scale on our map" to make one vector look like the other.

4. Subtracting vectors

Example 5. Let $\vec{v}=\left[\begin{array}{ll}4 & 3\end{array}\right] . \vec{w}=\left[\begin{array}{ll}5 & 3\end{array}\right]$. Then $\vec{v}-\vec{w}=$? Ans: $\left[\begin{array}{ll}-1 & 0\end{array}\right]$.
How can we represent vector subtraction pictorially?
Step 1. Draw \vec{v}.
Step 2. Multiply \vec{w} by -1 .
Step 3. Add $-\vec{w}$ to \vec{v}.
Exercise Use the space below to draw a picture of $\vec{v}-\vec{w}$.

5. Linear Combinations

Example 6. Find a and b such that $a\left[\begin{array}{ll}5 & 3\end{array}\right]+b\left[\begin{array}{ll}3 & 2\end{array}\right]=\left[\begin{array}{ll}0 & 1\end{array}\right]$.
Ans: Solve two equations with two unknowns:
$5 a+3 b=0$
$3 a+2 b=1$.
We get: $a=-3, b=5$.
So $(-3)\left[\begin{array}{ll}5 & 3\end{array}\right]+\left(\begin{array}{ll}5\end{array}\right)\left[\begin{array}{ll}3 & 2\end{array}\right]=\left[\begin{array}{ll}0 & 1\end{array}\right]$. We say $\left[\begin{array}{ll}0 & 1\end{array}\right]$ is a linear combination of $\left[\begin{array}{ll}5 & 3\end{array}\right]$ and $\left[\begin{array}{ll}3 & 2\end{array}\right]$.
(Books sometimes just say combination, instead of linear combination.)

DEFINITION: linear combination

Let $\overrightarrow{v_{1}}, \cdots, \overrightarrow{v_{n}}$ be vectors. To say a vector \vec{w} is a linear combination of $\overrightarrow{v_{1}}, \cdots, \overrightarrow{v_{n}}$ means there exist scalars $c_{1}, \cdots, c_{n} \in \mathbb{R}$ such that $c_{1} \vec{v}_{1}+\cdots c_{n} \overrightarrow{v_{n}}=\vec{w}$. The numbers c_{1}, \cdots, c_{n} are called coefficients.
Example 7. Is $\left[\begin{array}{lll}5 & 6 & 0\end{array}\right]$ a linear combination of $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$, $\left[\begin{array}{lll}0 & 3 & 0\end{array}\right]$, and $\left[\begin{array}{lll}0 & 0 & 8\end{array}\right]$? Ans:
Example 8. Is $\left[\begin{array}{lll}5 & 6 & 0\end{array}\right]$ a linear combination of $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right],\left[\begin{array}{lll}0 & 3 & 0\end{array}\right]$, and $\left[\begin{array}{lll}0 & 0 & 8\end{array}\right]$? Ans:
Example 9. What are all possible lin combs of $\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & 1\end{array}\right]$? Ans:
Example 10. What are all possible lin combs of $\left[\begin{array}{ll}1 & 1\end{array}\right]$ and $\left[\begin{array}{ll}2 & 2\end{array}\right]$? Ans:

