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2.2 Direct Methods for Solving Linear Systems

No, this matrix is not in row echelon form. Why not? Give at least one reason.
The leading entry in row 3 appears to the left of the leading entry in row 2.

@ This matrix is in row echelon form, but not reduced row echelon form. Why not?.
There are many reasons. For example, the leading entry in row 1 is 7 not 1.

@ This matrix is in row echelon form, and also reduced row echelon form. Why is the 3 okay?
The 3 oceurs in 2 column that does not contain a leading 1.

@ This matrix is in row echelon form, and also reduced row echelon form. Why are the Os okay?
All three rows are zero, so no leading 1s are required.

@ No, this matrix is not in row echelon form. Why not? Give a reason.
The row of all zeroes is not at the bottom.

@ No, this matrix is not in row echelon form. Why not? Give a reason.
The leading entry in row 3 appears to the left of the leading entry in row 2.

y No, this matrix is not in row echelon form. Why not? Give a reasomn.
The leading entry in row 2 appears underneath the leading entry in row 1.

( 8.)This matrix is in row echelon form, but not reduced row echelon form. Why not?
The leading entry in row 4 is not a 1. Could we have given another reason?
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19. Performing Ry + Ry and R; + R, does not leave rows 1 and 2 identical.
After performing Ry -+ Ry the second row is now B, = Ry + Ry.
So Ry + Ry is actually By +- Ré =R+ (Rg -+ Rl) = 2Ry + B,.
Performirg Ry + By and R; + R, simultaneously annuls their linearity.
20 T1 | Ra+-Ry Ty - Ri~FRg —Z2 Rot+Ry | =22 | —R; | 22
Tl | T | mpdm | Totzr ] T |z | T m |
‘ The net effect is to interchange the first and second TOWS.

21. Our first task is to show that [ 2 i :I ERZ__:?,R‘ { g 1é J is no? an elementary row operation.

Cbmpare 3Ry — 2Ry to the elementary row operations R; < R;, kR;, R; + kR;.

Clearly, 3Ry — 2R; is a combination of kR; and R; + kR; done at the same time.
Performing row operations simultaneously annuls their linearity.

. 317 %253 17sm[3 1
One way to achieve the result is: [2 4J T3 [O B|l—lg1g|

@We.must show that we can create a 1 in row 1, column 1 using B; + R;, kR;, or R; + kR;.
32| ror 14 32]1p 1% 327 R—or, [1 =6
147 —/ |32 14)—|1 4! 14 /7 |1 4y
R; « R; is the most direct. That is, it requires the fewest operations.
kR; requires fewer operations than R; + kR;, but R; + kR; gives integer results.
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80 2 Systems of Linear Equations

@ Since rank = the number of nonzero rows in the row echelon form of a matrix,
before we answer we should put each of the matrices into row echelon form.

(1) Since this matrix A is not in its row echelon form B, we must row reduce A first.
101] 101
003 Rﬂ% 010 |. 8o, rank A = the number of nonzero rows in B = 3.
010] 003

(2) A is in row echelon form, so we need only count the nimber of its nonzero rows.
(70 10

Since | 0 1 —1 4 | has two nonzero rows, rank A=2
(60 00

(3) A is in row echelon fofm, so we need only count the number of its nonzero rows.
(0130
10001

(4) A is in row echelon form, so we need only court the number of its nonzero rows.
(000

Since | 0 0 0 | has no nonzero rows, rank 4 = 0.
000

{5) Since this matrix A is not in its row echelon form B, we must row reduce A first.
[103 -4 0 103 40|

000 00|®=f{015 01]|. So,rank A=2.

015 01 000 00

(6) Since this matrix A is not in its row echelon form B, we must row reduce A first.
"0 0 1] 100 |
01021010/, So,rank A=3.

100] 001 :

Since has two nonzero rows, rank A = 2.

this matrix A is not in its row echelon form B, we must row reduce A first.
123 R:—Ry 1 2 3

100 Ra_%R1+%Rz 0 -2 -3
011
001

0 0 -1 . So, rank 4 = 3.

R4—Ri1+R2+2R3
— 0 0

chelon form, so we need only count the number of its nonzero rows.
51

3 has 3 nonzero rows, rank 4 = 3.
0

OO O
QOO = W
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100 10 = 1 %0 010 01 = 001 000
24. j010|,{01=]|,i0011|,j001|,|000|,|000|,and|000D
001 000 600 000 000 000 000
1 2 -3 1 9
25. We have the following system of equations: { 2 -1 1 zz | = |0
4 -1 1 x3 4
We form the augmented matrix and row reduce it as follows:
Tl 23|97 Rt8ma [13 =1 0|21l mer, [ 2 -111 0
2 -1 110} ps—2r 2 -1 1 0 _R3 13 -1 01 21
4 -1 114 - 0 1-1 0 -11|-4
Ri-Re| 2 00 41, [ 1 00 00| 2
“r, |-13 10|521 (2% |13 10 R t18k 10| 5
2 -7 —_—
— | 0-11 0-11 ~11(—-4
1002 T 12
R.S.L'"fz 010|5 |. So, the solutionis | zz [ = {5 |.
. (0011 T3 1
..@We form the augmented matrix and row reduce it as follows:
1 -11(0 ' 1~-11 0
-1 315 RS-t 1 3] 5
3 172 0 00|-8
The third row is equivalent to the equation 0 = -8 which clearly has no sclution.

Therefore, the system is inconsistent.
Does R3 = 5R; + 2Rs (excluding constants) cause the system to be inconsistent?

27/ We form the augmented matrix and row reduce it as follows:

1-3-2]0 1 -3 -210
—1 2 1|0 |[FetEfI0R] 1 3 19
2 4 610 0 0 0l0

Rs = —8R; — 10R; (excluding constants) does not cause a problem here? Why?
Since the system is homogeneous (ali constants = 0), the system has at least one solution.

1-3-2]0 1-3-2]0 71901

0
Fetlalg 1 -1 012 ® |0 1 1|0 |t g11 0
0 0 00 0 0 010 0000

The third row of 0 = 0 tells us that xz =1t is a free variable.
Back substituting, we bave 2o +t=0=> 2y =—-tand z; + 1 =0 = 21 = —4¢.
Iy -1 Zy 1
So, the solution is [ 2 | =¢ | —1 | orequivalently | g | =t | 1
3 14 T3 -1
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. @ﬂom the beginning, we know this system has infinitely many solutions. Why?
Because this system has 4 variables and only 3 equations they have to satisfy.

We form the augmented matrix and row reduce it as follows:

2 3-1 4]¢ 1001
310 1!1] o102

0014

3 -4 112

[ B R TP

The fact that 4 —3 = 1 tells us that z = ¢ i a free variable.

Soy+4t=%=>y=%—4t,:c+2t——-%—:‘>x=%—2t,andw+t=%=>w

So, the solution is

N i
i
O e pI=

Note that there are 3 equations but only 2 varisbles o satisfy therm.

-1
-2
—4

1

+t

It is helpful, therefore, to begin by noting R; = 9R, ~ 4R,.

21 3 2113
41 7 FemRutaRe |y iy | Re2ms
25 -1 , Dolo
So, the solution is [:J = [_f }

113

10
O0~1j1)l.— .01
00

0 010

I
_E—t'

2
-1
0

30. From the beginning, we know this system has infinitely many solutions. Why?
Because this system has 4 variables and only 3 equations they have to satisfy.

We form the augmented matrix and row reduce it as follows:

-1 3 -2 4] ¢ 1-30 o0 2
2 -6 1-2/-3|— ¢ 01 -2

1 -3 4 -8 2 0 00 0] ¢
Since rank A =2 and 4 — 9 = 2, we get 2 free variables: To=sand x4 = ¢,
Back substituting, we get T4 =% 25 =1+ 2, m3 =3, and z; = —2 + 3.
|- &Iy -2 3 0
. .. I _ 0 1 0
So, the solution ig D 1 + s 0 + ¢ 9
L T4 0 0 1
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2 Systems of Linear Equations 2.2 'Direct Method:

40. First row reduce th
o[k 2| 3
2 —4|—6
(a) There are no
The system h:
24+2%=0=
But k= —1=
(b) The system h:
From (a), we |

.\Begin by thinking of this system &8 [Alx], then determine rank A by insf)ection.

Mentally performing Rz — 2R, implies the equation 0 = 2.
This equation makes it obvious that this system has no solution.

Note: Rg = 2R, implies rank 4 = 2. How does that relate to our answer?

' Since this system has 4 variables and at most 3 equations,.' :
it has infinitely many solutions. Why? There is at least one free variable.

. Since this system has 5 variables and at most 3 equations,
it has infinitely many solutions. Why? There are at least two free variables.

3. We need only show that the condition ad -be#0 implies‘that rank A = 2. Why?

If rank A = 2, there are 2—2 =10 free variables so the system has a unique solution. (¢) The only valu

The system h .

Case 1: @ = 0, which implies both b # 0 and ¢ # 0. Why? Because 0d — be = —be # 0. From (a), we

10 b | RieR e d
Row reduce A: [cd] =0

A is now in row echelon form with 2 nonzero rows. Therefore, rank A=2.

41. First row reduce tl

3

(a) When k = —1
The system h
1-k*=0=
And k=-1:

(b) When k # &
From {a), we

(¢) When k=1,
The system !
From (a), we

Case 2 ¢ = 0, which implies both a # 0 and d # 0. Why? Because ad — b0 = ad # 0.
. . a b
Row reduce A: [ 0 d ]

A is now in row echelon form with 2 nongero rows. Therefore, rank A = 2.

Cose 3 a# 0 and c# 0.
‘ . a b1 [ac bel pe—ma | 0c b
Row reduce A: [ ¢ d] o {ac ad] — 1 0 ad-bc}’ ' o

—

A is now in row echelon form with 2 nonzerc rows. Therefore, rank A = 2.

42. First row reduce t

1 —
1
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The system
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86 2 Systems of Linear Equationg

First row reduce the system [Al|x] and then answers parts (a), (b), and (¢)-

11 k| 1 1 1 k 1
1 k1| 1| —10k—-1 11—k 0
k1l 1]=2: 0 0 kKs+k-20k=+2

(a) When k = 1, this system has no solution. Why?

“The system has no solution when A has a zero row with corresponding constant # 0.
k2_+k-2 =0 = k = I makes the bottom row 0, but the constant k+2=14+2=330.

(b) When k # 1, —2, this system has a unique solution. Why?
When k % 1, -2, rank 4 = 3. So, there are 3 — 3 = 0 free variables.
(c) When k = —2, this system has infinitely many solutions.

The system has infinitely many solutions when A has a zero row with constant = 0.
k2+k—2=0= k= —2 makes the bottom row 0 and the constant k4+2=-2+2=0. .

44. (a) The following system of n equations has infinitely many solutions:

Ty +T2 -+ 2Tn =0
2x1 + 229 + -+ - + 2z, =0
nry +nry+ -+ nkp =0

Likewise, the following system of n + 1 equations has iﬁﬁnitely many solutions:

Ty Tpt o+ Tn =0
2$1+2$2+"'+2$n =0
nTy + Ty + - + N =0 3
n+Dz+(n+2zo+---+(n+1)zy =0 .
(b} The system of n equations z; =0, 3 =0, ..., z, = 0 has the urique solution z; = 0.
as does the system of 2n equations 1 =0, 221 =0..., 2, =0, 22, = 0.
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2 Systems of Linear Equations

47. When looking for examples, begin with familiar planes like z =0, y =0, and z=

{(a) Let’s start with = 0 and y = 0. These planes obviously intersect in the z-axis. Why?

As in Exercise 45: €.+ 0y + 0z =0 = [1' 0 0'0

]=>x=0,y=0,z=t=>

0z + ¥y + 02 =20 01G|0
T 0 0
The line of intersection of z =0 and y=0is { y | = | 0 | +¢ | 0 |, the z-axis.
z 0 1

All we need is one other plane that passes through the z-axis to complete our example.

It may help to sketch R? and look for & line that passes through the origin.
One such line is z = y which corresponds to the plane z — y = 0 in RS,

Sketch these three planes in R? to confirm they intersect in the z-axis.

Q: How do we confirm these three planes intersect in the z-axis .algebraically?
A: Check the intersection between z = 0 and z ~ y = 0. Why is that enough?

. . _a:+0y+0z-—-0 000 _ _
As in Exercise 45: T~ y+ 0z =0 => 101 =zr=y=0,and z=1=
‘ x 0
The line of intersection of z=0andz -y =01is | v 0
z 1

Q: Start with y =0 and z =0 and then x =1 and y = 1. Is there a pattern?

Begin with z = 0 and y = 0. We need one plane that crosses across hoth of these.
It may help to visualize R? and look for a line that cuts across the first quadrant.
Tt is obvious that the plane z + y = 1 will complete the example?

Sketch these three planes in R® to confirm they intersect in pairs.
For example, z = 0 and = + y = 1 intersect in the line [z,y, 2z} = {0,1,0] +£[0,0,1].

. : Lz + 0y + 0z =20 1 00 -
As in Exercise 45: z 4+ y 4+ 0z = =>{1 01 =>z=0,y=1,and z=1¢=
T G
The line of intersection of t =0 and xs+y=1is | y 0
z 1

An obvious example is ¢ =0, z =1, and y = 0. Why?
The normal vector for £ =0 and z = 1 is [1,0,0]
while the normal vector for y = 0 is [0,1,0].

The most obvious exampleis z =0,y =0, and z =0
Note that any example of z = a, ¥ = ¢, and 7 = ¢ will work.
Are there any other obvious pattern examples that will work?
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