Introduction to Systems of Linear Equations

Following Example 2.1 and justify our assertion by applying the definition of linear.
\[ax + (b) z = 0 \] is linear because power of \(z \) is 1 and \(a, b \) are constants.

We follow Example 2.1 and justify our assertion by applying the definition of linear.
\[x^2 + y^2 + z^2 = 1 \] is not linear because \(x, y, z \) occur to the power 2.

\[x^{-1} + 7y + z = \sin \frac{\pi}{5} \] is not linear because \(x \) occurs to the power -1.

\[2x - xy - 5z = 0 \] is not linear because the product \(xy \) is of degree 2.

\[3 \cos x - 4y + z = \sqrt{3} \] is not linear because \(\cos x \) is not linear.

\[(\cos 3)x - 4y + z = \sqrt{3} \] is linear because \(\cos 3 \) and \(\sqrt{3} \) are constants.

As in Section 1.3, we put the equation of this line into general form \(ax + by = c \).

\[2x + y = 7 - 3y \] is equivalent to \(2x + 4y = 7 \) after adding \(3y \) to both sides.

Note: When the equation is linear there is no restriction on \(x \) and \(y \). Why?

8. We begin by determining the restrictions on the variables \(x \) and \(y \).

Typical sources are 1) division, 2) square roots, and 3) domains (like \(\log x \Rightarrow x > 0 \)).

 Step 1. Determine restriction \textit{type}. With \(\frac{x^2 - y^2}{x - y} = 1 \), it is division.

 Step 2. Set the denominator equal to zero to determine the restriction.

 We have \(x - y = 0 \Rightarrow x = y \). So, the restriction is \(x \neq y \).

 Step 3. Simplify the given equation using algebra.

 \[\frac{x^2 - y^2}{x - y} = 1 \Rightarrow \frac{(x - y)(x + y)}{x - y} = 1 \text{-cancel} \Rightarrow x + y = 1. \]

 Note: This tells us the given function is equivalent to the line \(x + y = 1 \) provided \(x \neq y \).

9. We begin by determining the restrictions on the variables \(x \) and \(y \).

 Typical sources are 1) division, 2) square roots, and 3) domains (like \(\log x \Rightarrow x > 0 \)).

 Step 1. Determine restriction \textit{type}. With \(\frac{1}{x} + \frac{1}{y} = \frac{4}{xy} \), it is division.

 Step 2. Set the denominators equal to zero to determine the restriction.

 We have \(x = 0, y = 0 \), and \(xy = 0 \). So, the restriction is \(x, y \neq 0 \).

 Step 3. Simplify the given equation using algebra.

 \[\frac{1}{x} + \frac{1}{y} = \frac{4}{xy} \text{ common denominator} \Rightarrow \frac{y}{xy} + \frac{x}{xy} = \frac{4}{xy} \text{ multiply both sides} \Rightarrow x + y = 4. \]

 Note: This tells us the given function is equivalent to the line \(x + y = 4 \) provided \(x, y \neq 0 \).
We begin by determining the restrictions on the variables \(x\) and \(y\).

Typical sources are 1) division, 2) square roots, and 3) domains (like \(\log x \Rightarrow x > 0\)).

Step 1. Determine restriction type. With \(\log_{10} x - \log_{10} y = 2\), it is logarithms.

Step 2. Apply the domain restrictions to determine the overall restriction.

In this case, we have the overall restriction of \(x > 0\) and \(y > 0\).

Step 3. Simplify the given equation using algebra.

\[
\log_{10} x - \log_{10} y = 2 \quad \Rightarrow \quad \log_{10} \frac{x}{y} = 2 \quad \Rightarrow \quad \log_{10} \frac{x}{y} = \log_{10} 10^2
\]

cancel and simplify \(x\) put in general form

\[
\frac{x}{y} = 100 \quad \Rightarrow \quad x - 100y = 0.
\]

Note: This tells us the given function is equivalent to the line \(x - 100y = 0\) provided \(x, y > 0\).

11. As in Example 2.2(a), we set \(x = t\) and solve for \(y\).

Setting \(x = t\) in \(3x - 6y = 0\) gives us \(3t - 6y = 0\). Solving for \(y\) yields \(6y = 3t \Rightarrow y = \frac{1}{2}t\).

So, we see the complete set of solutions can be written in the parametric form \([t, \frac{1}{2}t]\).

Note: We could have set \(y = t\) to get \(3x - 6t = 0\) and solved for \(x\) so \(x = 2t\) and \([2t, t]\).

12. As in Example 2.2(a), we set \(x_1 = t\) and solve for \(x_2\).

Setting \(x_1 = t\) yields \(2t + 3x_2 = 5\). Solving for \(x_2\) yields \(3x_2 = 5 - 2t \Rightarrow x_2 = \frac{5}{3} - \frac{2}{3}t\).

So, a complete set of solutions written in parametric form is \([t, \frac{5}{3} - \frac{2}{3}t]\).

Note: We could have set \(x_2 = t\) and solved for \(x_1\) to get the parametric form \([\frac{5}{3} - \frac{2}{3}t, t]\).

13. As in Example 2.2(b), we set \(y = s\), \(z = t\) and solve for \(x\). (Why is this a good choice?)

This substitution yields \(x + 2s + 3t = 4\). Solving for \(x\) yields \(x = 4 - 2s - 3t\).

So, a complete set of solutions written in parametric form is \([4 - 2s - 3t, s, t]\).

14. As in Example 2.2(b), we set \(x_1 = s\), \(x_2 = t\) and solve for \(x_3\).

This substitution yields \(4s + 3t + 2x_3 = 1\). Solving for \(x_3\) yields \(x_3 = \frac{1}{2} - 2s - \frac{3}{2}t\).

So, a complete set of solutions written in parametric form is \([s, \frac{1}{2} - 2s - \frac{3}{2}t, t]\).
Introduction to Systems of Linear Equations

Augmented matrix

\[
\begin{bmatrix}
1 & -1 & 0 & 3 & 1 & 2 \\
1 & 1 & 2 & 1 & -1 & 4 \\
0 & 1 & 0 & 2 & 3 & 0
\end{bmatrix}
\]

becomes

\[
a - b + 3d + e = 2
\]

\[
b + 2c + d - e = 4
\]

In Example 2.4(a), we add \((x - y) + (2x + y) = 0 + 3\) to get \(3x = 3 \Rightarrow x = 1\) and \(y = 1\).

Quick check confirms that \([1, 1]\) is indeed the unique solution of the system.

Example 2.4(c)

After Example 2.6, we row reduce the augmented matrix from Exercise 28.

\[
\begin{bmatrix}
2 & 3 & -1 & 1 \\
1 & 0 & 1 & 0 \\
-1 & 2 & -2 & 0
\end{bmatrix}
\]

Row operations:

\[
R_1 \rightarrow R_2
\]

\[
\begin{bmatrix}
1 & 0 & 1 & 0 \\
2 & 3 & -1 & 1 \\
-1 & 2 & -2 & 0
\end{bmatrix}
\]

\[
R_3 \rightarrow R_3 + R_2
\]

\[
\begin{bmatrix}
1 & 0 & 1 & 0 \\
2 & 3 & -1 & 1 \\
0 & 1 & -1 & 1/3
\end{bmatrix}
\]

\[
\frac{1}{3} R_3 \rightarrow R_3
\]

\[
\begin{bmatrix}
1 & 0 & 1 & 0 \\
2 & 3 & -1 & 1 \\
0 & 1 & -1 & 1/3
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 & 2/3 \\
0 & 1 & -1 & 1/3 \\
0 & 0 & 1 & -2/3
\end{bmatrix}
\]

\[
x_1 = \frac{2}{3}, x_2 = -\frac{1}{3}, \text{ and } x_3 = -\frac{2}{3}.
\]

So the solution is \([x_1, x_2, x_3] = [\frac{2}{3}, -\frac{1}{3}, -\frac{2}{3}]\).

As shown after Example 2.6, we row reduce the augmented matrix from Exercise 29.

\[
\begin{bmatrix}
1 & 5 & -1 \\
-1 & 0 & 1 \\
2 & 4 & 1
\end{bmatrix}
\]

Row operations:

\[
R_2 \rightarrow R_2 + R_1
\]

\[
\begin{bmatrix}
1 & 5 & -1 \\
0 & 6 & -6 \\
2 & 4 & 1
\end{bmatrix}
\]

\[
R_3 \rightarrow R_3 + R_2
\]

\[
\begin{bmatrix}
1 & 5 & -1 \\
0 & 6 & -6 \\
0 & 0 & 0
\end{bmatrix}
\]

\[
y = -1 \text{ and } z = -1 - 5(-1) = 4,
\]

so the solution is \([x, y] = [4, -1]\).

As shown after Example 2.6, we row reduce the augmented matrix from Exercise 30.

\[
\begin{bmatrix}
1 & -2 & 0 & 1 & 2 \\
1 & 1 & -1 & 3 & 1 \\
2 & 4 & 1 & 2
\end{bmatrix}
\]

Row operations:

\[
R_1 \rightarrow R_1 + R_2
\]

\[
\begin{bmatrix}
1 & -2 & 0 & 1 & 2 \\
0 & -1 & 1 & -2 & 3 \\
2 & 4 & 1 & 2
\end{bmatrix}
\]

\[
d = t, c = s, b = -3 - s - 2t, \text{ and } a = 2 + 2(-3 - s - 2t) - t = -4 - 2s - 5t,
\]

so the solution is \([a, b, c, d] = [-4 - 2s - 5t, -3 - s - 2t, s, t]\).

As shown after Example 2.6, we row reduce the augmented matrix from Exercise 31.

\[
\begin{bmatrix}
0 & 1 & 1 & 1 \\
1 & -1 & 0 & 1 \\
2 & -1 & 1 & 1
\end{bmatrix}
\]

Row operations:

\[
R_1 \rightarrow R_1 + R_2
\]

\[
\begin{bmatrix}
2 & -1 & 1 & 1 \\
2 & -1 & 0 & 1 \\
0 & 1 & 1 & 1
\end{bmatrix}
\]

\[
R_2 \rightarrow R_2 - R_1
\]

\[
\begin{bmatrix}
2 & -1 & 1 & 1 \\
0 & -1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{bmatrix}
\]

\[
R_3 \rightarrow R_3 + R_1
\]

\[
\begin{bmatrix}
2 & -1 & 1 & 1 \\
0 & -1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix}
\]

\[
\Rightarrow 0 = 0 \Rightarrow \text{No solution.}
\]

As shown after Example 2.6, we row reduce the augmented matrix from Exercise 32.

\[
\begin{bmatrix}
1 & -1 & 0 & 3 & 1 & 2 \\
1 & 1 & 2 & 1 & -1 & 4 \\
0 & 1 & 0 & 2 & 3 & 0
\end{bmatrix}
\]

Row operations:

\[
R_2 \rightarrow R_2 - R_1
\]

\[
\begin{bmatrix}
1 & -1 & 0 & 3 & 1 & 2 \\
0 & 2 & 2 & -2 & 2 \\
0 & 2 & 0 & 4 & 6 & 0
\end{bmatrix}
\]

\[
R_3 \rightarrow R_3 - R_2
\]

\[
\begin{bmatrix}
1 & -1 & 0 & 3 & 1 & 2 \\
0 & 2 & 2 & -2 & 2 \\
0 & 0 & -2 & 6 & 8 & -2
\end{bmatrix}
\]

Using back substitution, we get:

\[
e = t, d = s, c = (-\frac{1}{3})(-2 - 6s - 8t) = 1 + 3s + 4t \]

\[
b = (\frac{1}{3})(-2 - 2(1 + 3s + 4t) + 2s + 2t) = -2s - 3t, a = 2 + (-2s - 3t) - 3s - t = 2 - 5s - 4t.
\]

So, the solution is \([a, b, c, d, e] = [2 - 5s - 4t, -2s - 3t, 1 + 3s + 4t, s, t] \).
39. The key to this problem is simple substitution.

(a) The fact that \(x = t \) tells us that \(x \) is a free variable. What does that tell us?

The linear equations we are looking for must be multiples of each other. Why?

Substituting \(t = x \) into \(y = 3 - 2t \) yields \(y = 3 - 2x \Rightarrow 2x + y = 3 \).

Any multiple of this equation will create the system we are looking for.

For example, \(2x + y = 3 \) and \(4x + 2y = 6 \) (which is just \(2 \times \) the equation \(2x + y = 3 \)).

(b) Substituting \(s = y \) into \(y = 3 - 2x \) yields \(s = 3 - 2x \Rightarrow x = \frac{3}{2} - \frac{1}{2}s \).

The parametric solution then becomes \(x = \frac{3}{2} - \frac{1}{2}s \) and \(y = s \).

40. The key to this problem is simple substitution.

(a) Substituting \(t = x_1 \) into \(x_2 = 1 + t, x_3 = 2 - t \) yields \(x_2 = 1 + x_1, x_3 = 2 - x_1 \).

These equations lead immediately to the system: \(-x_1 + x_2 = 1, x_1 + x_3 = 2 \).

(b) Substituting \(s = x_3 \) into \(x_3 = 2 - x_1 \) yields \(s = 2 - x_1 \Rightarrow x_1 = 2 - s \).

Then substituting \(2 - s = x_1 \) into \(x_2 = 1 + x_1 \) yields \(x_2 = 1 + (2 - s) \Rightarrow x_2 = 3 - s \).

The parametric solution then becomes \(x_1 = 2 - s, x_2 = 3 - s, \) and \(x_3 = s \).

41. Let \(u = \frac{1}{2}, \) and \(v = \frac{1}{4} \). Then the system of equations becomes \(2u + 3v = 0, 3u + 4v = 1 \).

Solving the second equation for \(v \) gives \(v = \frac{3}{4} - \frac{3}{4}u \). So, substitution \(2u + 3(\frac{3}{4} - \frac{3}{4}u) = 0 \).

Thus \(u = 3 \) and \(v = \frac{1}{4} - \frac{3}{4}(3) = -2 \). So, the solution is \([x, y] = \left[\frac{3}{2}, \frac{1}{2} \right] \).

42. Let \(u = x^2, \) and \(v = y^2 \). So, the system becomes \(u + 2v = 6, u - v = 3 \).

Subtracting the second equation from the first gives \(3v = 3 \Rightarrow v = 1 \).

Substituting this into the second equation gives \(u = 3 + 1 = 4 \). Thus \(u = 4 \) and \(v = 1 \Rightarrow \) The solution set is \([x, y] = \left[\pm \sqrt{4}, \pm \sqrt{1} \right] \). That is, \{0, 2, -1, -1, 0, 2\}.

43. Let \(u = \tan x, \) \(v = \sin y, \) \(w = \cos z \Rightarrow u - 2v = 2, u - v + w = 2, v - w = -1 \).

We form the augmented matrix and row reduce it to find the solution of the system:

\[
\begin{bmatrix}
1 & 2 & 2 \\
1 & -1 & 1 \\
0 & 1 & -1
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & -2 & 0 \\
0 & 1 & 1 \\
0 & 1 & -1
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & -2 & 0 \\
0 & 1 & 1 \\
0 & 0 & -2
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & -2 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}
\]

Using back substitution \(w = \frac{1}{2}, v = -\frac{1}{2}, u = 2 + 2(-\frac{1}{2}) = 1 \Rightarrow [u, v, w] = \left[1, -\frac{1}{2}, \frac{1}{2} \right] \).

Since \(x = \tan^{-1} u, \) \(y = \sin^{-1} v, \) \(z = \cos^{-1} w, \) the solution is \([x, y, z] = \left[\frac{\pi}{4}, -\frac{\pi}{6}, \frac{\pi}{3} \right] \).

44. Let \(r = 2^a, \) and \(s = 3^b \). Then the system becomes \(-r + 2s = 1, 3r - 4s = 1 \).

Adding three times the first equation to the second gives \(2s = 4 \Rightarrow s = 2 \).

Substituting \(s = 2 \) into \(-r + 2s = 1 \) yields \(-r + 2(2) = 1 \Rightarrow r = 3 \Rightarrow [r, s] = [3, 2] \).

Since \(a = \log_2 r \) and \(b = \log_3 s, \) the solution is \([a, b] = [\log_2 3, \log_3 2] \).