MW6:10,11,35,44

troduction to Systems of Linear Equations

Introduction to Systems of Linear Equations

We follow Example 2.1 and justify our assertion by applying the definition of *linear*. $\pi y + (\sqrt[3]{5}) z = 0$ is linear because power of z is 1 and π , $\sqrt[3]{5}$ are constants.

We follow Example 2.1 and justify our assertion by applying the definition of *linear*. $x^2 + y^2 + z^2 = 1$ is *not* linear *because* x, y, z occur to the power 2.

 $\frac{\pi}{3}(x^{-1} + 7y + z) = \sin \frac{\pi}{9}$ is **not** linear **because** x occurs to the power -1.

2x - xy - 5z = 0 is **not** linear **because** the product xy is of degree 2.

 $3\cos x - 4y + z = \sqrt{3}$ is not linear because $\cos x$ is not linear.

5. $(\cos 3) x - 4y + z = \sqrt{3}$ is linear because $\cos 3$ and $\sqrt{3}$ are constants.

As in Section 1.3, we put the equation of this line into general form ax + by = c. 2x + y = 7 - 3y is equivalent to 2x + 4y = 7 after adding 3y to both sides. **Note:** When the equation is **linear** there is no restriction on x and y. Why?

8. We begin by determining the restrictions on the variables x and y. Typical sources are 1) division, 2) square roots, and 3) domains (like $\log x \Rightarrow x > 0$).

Step 1. Determine restriction type. With $\frac{x^2 - y^2}{x - y} = 1$, it is division.

Step 2. Set the denominator equal to zero to determine the restriction. We have $x-y=0 \Rightarrow x=y$. So, the *restriction* is $x\neq y$.

Step 3. Simplify the given equation using algebra.

$$\frac{x^2-y^2}{x-y}=1 \overset{\text{factor}}{\Rightarrow} \frac{(x-y)(x+y)}{x-y}=1 \overset{\text{cancel}}{\Rightarrow} x+y=1.$$

Note: This tells us the given function is equivalent to the line x + y = 1 provided $x \neq y$.

9. We begin by determining the restrictions on the variables x and y. Typical sources are 1) division, 2) square roots, and 3) domains (like $\log x \Rightarrow x > 0$).

Step 1. Determine restriction type. With $\frac{1}{x} + \frac{1}{y} = \frac{4}{xy}$, it is division.

Step 2. Set the denominators equal to zero to determine the restriction. We have x = 0, y = 0, and xy = 0. So, the restriction is $x, y \neq 0$.

Step 3. Simplify the given equation using algebra.

$$\frac{1}{x} + \frac{1}{y} = \frac{4}{xy} \stackrel{\text{common}}{\Rightarrow} \frac{y}{xy} + \frac{x}{xy} = \frac{4}{xy} \stackrel{\text{multiply both sides}}{\Rightarrow} x + y = 4$$
is tells us the given function is equivalent to the line $x + y = 4$ pro

Note: This tells us the given function is equivalent to the line x + y = 4 provided $x, y \neq 0$.

We begin by determining the restrictions on the variables x and y. Typical sources are 1) division, 2) square roots, and 3) domains (like $\log x \Rightarrow x > 0$).

- Step 1. Determine restriction type. With $\log_{10} x \log_{10} y = 2$, it is domains.
- Step 2. Apply the domain restrictions to determine the overall restriction. In this case, we have the overall restriction of x > 0 and y > 0.
- Step 3. Simplify the given equation using algebra.

Note: This tells us the given function is equivalent to the line x - 100y = 0 provided x, y > 0.

- As in Example 2.2(a), we set x = t and solve for y. Setting x = t in 3x - 6y = 0 gives us 3t - 6y = 0. Solving for y yields $6y = 3t \Rightarrow y = \frac{1}{2}t$. So, we see the complete set of solutions can be written in the parametric form $[t, \frac{1}{2}t]$.
- **Note:** We could have set y = t to get 3x 6t = 0 and solved for x so x = 2t and [2t, t].
- 12. As in Example 2.2(a), we set $x_1 = t$ and solve for x_2 . Setting $x_1 = t$ yields $2t + 3x_2 = 5$. Solving for x_2 yields $3x_2 = 5 - 2t \Rightarrow x_2 = \frac{5}{3} - \frac{2}{3}t$. So, a complete set of solutions written in parametric form is $[t, \frac{5}{3} - \frac{2}{3}t]$. Note: We could have set $x_2 = t$ and solved for x_1 to get the parametric form $[\frac{5}{2} - \frac{3}{2}t, t]$.
- 13. As in Example 2.2(b), we set y = s, z = t and solve for x. (Why is this a good choice?) This substitution yields x + 2s + 3t = 4. Solving for x yields x = 4 2s 3t. So, a complete set of solutions written in parametric form is [4 2s 3t, s, t].
- 14. As in Example 2.2(b), we set $x_1 = s$, $x_2 = t$ and solve for x_3 .

 This substitution yields $4s + 3t + 2x_3 = 1$. Solving for x_3 yields $x_3 = \frac{1}{2} 2s \frac{3}{2}t$. So, a complete set of solutions written in parametric form is $[s, t, \frac{1}{2} 2s \frac{3}{2}t]$.

augmented matrix
$$\begin{bmatrix} 1 & -1 & 0 & 3 & 1 & 2 \\ 1 & 1 & 2 & 1 & -1 & 4 \\ 0 & 1 & 0 & 2 & 3 & 0 \end{bmatrix}$$
 becomes $a + b + 2c + d - e = 4$
 $b + 2d + 3e = 0$

As in Example 2.4(a), we add (x-y)+(2x+y)=0+3 to get $3x=3\Rightarrow x=1$ and y=1. A quick check confirms that [1,1] is indeed the unique solution of the system.

shown after Example 2.6, we row reduce the augmented matrix from Exercise 28.

$$x_1 = \frac{2}{3}$$
, $x_2 = -\frac{1}{3}$, and $x_3 = -\frac{2}{3}$. So the solution is $[x_1, x_2, x_3] = \left[\frac{2}{3}, -\frac{1}{3}, -\frac{2}{3}\right]$.

35. As shown after Example 2.6, we row reduce the augmented matrix from Exercise 29.

$$\left[\begin{array}{c|c|c} 1 & 5 & -1 \\ -1 & 1 & -5 \\ 2 & 4 & 4 \end{array}\right] \stackrel{R_2+R_1}{\longrightarrow} \left[\begin{array}{c|c|c} 1 & 5 & -1 \\ 0 & 6 & -6 \\ 0 & -6 & 6 \end{array}\right] \stackrel{R_3+R_2}{\longrightarrow} \left[\begin{array}{c|c|c} 1 & 5 & -1 \\ 0 & 6 & -6 \\ 0 & 0 & 0 \end{array}\right] \Rightarrow$$

$$y = -1$$
 and $x = -1 - 5(-1) = 4$, so the solution is $[x, y] = [4, -1]$.

36. As shown after Example 2.6, we row reduce the augmented matrix from Exercise 30.

$$\begin{bmatrix} 1 & -2 & 0 & 1 & 2 \\ -1 & 1 & -1 & -3 & 1 \end{bmatrix} \xrightarrow{R_2 + R_1} \begin{bmatrix} 1 & -2 & 0 & 1 & 2 \\ 0 & -1 & -1 & -2 & 3 \end{bmatrix} \Rightarrow$$

$$d = t, c = s, b = -3 - s - 2t, \text{ and } a = 2 + 2(-3 - s - 2t) - t = -4 - 2s - 5t,$$
so the solution is $[a, b, c, d] = [-4 - 2s - 5t, -3 - s - 2t, s, t].$

37. As shown after Example 2.6, we row reduce the augmented matrix from Exercise 31.

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & -1 & 0 & 1 \\ 2 & -1 & 1 & 1 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{bmatrix} 2 & -1 & 1 & 1 \\ 2 & -2 & 0 & 2 \\ 0 & 1 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 2 & -1 & 1 & 1 \\ 0 & -1 & -1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \xrightarrow{R_3 + R_2} \begin{bmatrix} 2 & -1 & 1 & 1 \\ 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

$$\Rightarrow 0 = 2 \Rightarrow \text{No solution.}$$

38. As shown after Example 2.6, we row reduce the augmented matrix from Exercise 32.

$$\begin{bmatrix} 1 & -1 & 0 & 3 & 1 & | & 2 \\ 1 & 1 & 2 & 1 & -1 & | & 4 \\ 0 & 1 & 0 & 2 & 3 & | & 0 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & -1 & 0 & 3 & 1 & | & 2 \\ 0 & 2 & 2 & -2 & -2 & | & 2 \\ 0 & 2 & 0 & 4 & 6 & | & 0 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & -1 & 0 & 3 & 1 & | & 2 \\ 0 & 2 & 2 & -2 & -2 & | & 2 \\ 0 & 0 & -2 & 6 & 8 & | & -2 \end{bmatrix}$$

Using back substitution, we get: e = t, d = s, $c = \left(-\frac{1}{2}\right)\left(-2 - 6s - 8t\right) = 1 + 3s + 4t$.

$$b = \left(\frac{1}{2}\right)(2 - 2(1 + 3s + 4t) + 2s + 2t) = -2s - 3t, \ a = 2 + (-2s - 3t) - 3s - t = 2 - 5s - 4t.$$

So, the solution is
$$[a, b, c, d, e] = [2 - 5s - 4t, -2s - 3t, 1 + 3s + 4t, s, t].$$

- 39. The key to this problem is simple substitution.
 - (a) The fact that x=t tells us that x is a free variable. What does that tell us? The linear equations we are looking for must be multiples of each other. Why? Substituting t=x into y=3-2t yields $y=3-2x\Rightarrow 2x+y=3$. Any multiple of this equation will create the system we are looking for. For example, 2x+y=3 and 4x+2y=6 (which is just $2\times$ the equation 2x+y=3).
 - (b) Substituting s=y into y=3-2x yields $s=3-2x \Rightarrow x=\frac{3}{2}-\frac{1}{2}s$. The parametric solution then becomes $x=\frac{3}{2}-\frac{1}{2}s$ and y=s.
 - 40. The key to this problem is simple substitution.
 - (a) Substituting $t = x_1$ into $x_2 = 1 + t$, $x_3 = 2 t$ yields $x_2 = 1 + x_1$, $x_3 = 2 x_1$. These equations lead immediately to the system: $-x_1 + x_2 = 1$, $x_1 + x_3 = 2$.
 - (b) Substituting $s=x_3$ into $x_3=2-x_1$ yields $s=2-x_1\Rightarrow x_1=2-s$. Then substituting $2-s=x_1$ into $x_2=1+x_1$ yields $x_2=1+(2-s)\Rightarrow x_2=3-s$. The parametric solution then becomes $x_1=2-s$, $x_2=3-s$, and $x_3=s$.
 - 41. Let $u=\frac{1}{x}$, and $v=\frac{1}{y}$. Then the system of equations becomes 2u+3v=0, 3u+4v=1. Solving the second equation for v gives $v=\frac{1}{4}-\frac{3}{4}u$. So, substitution $\Rightarrow 2u+3\left(\frac{1}{4}-\frac{3}{4}u\right)=0$. Thus u=3 and $v=\frac{1}{4}-\frac{3}{4}\left(3\right)=-2$. So, the solution is $[x,y]=\left[\frac{1}{3},-\frac{1}{2}\right]$.
 - 42. Let $u=x^2$, and $v=y^2$. So, the system becomes u+2v=6, u-v=3. Subtracting the second equation from the first gives $3v=3\Rightarrow v=1$. Substituting this into the second equation gives u=3+1=4. Thus u=4 and $v=1\Rightarrow$ The solution set is $[x,y]=[\pm\sqrt{4},\pm\sqrt{1}]$. That is, $\{[2,1],[2,-1],[-2,1],[-2,-1]\}$.
 - 43. Let $u = \tan x$, $v = \sin y$, $w = \cos z \Rightarrow u 2v = 2$, u v + w = 2, v w = -1. We form the augmented matrix and row reduce it to find the solution of the system:

Using back substitution $w = \frac{1}{2}$, $v = -\frac{1}{2}$, $u = 2 + 2\left(-\frac{1}{2}\right) = 1 \Rightarrow [u, v, w] = \left[1, -\frac{1}{2}, \frac{1}{2}\right]$. Since $x = \tan^{-1} u$, $y = \sin^{-1} v$, $z = \cos^{-1} w$, the solution is $[x, y, z] = \left[\frac{\pi}{4}, -\frac{\pi}{6}, \frac{\pi}{3}\right]$.

Let $r=2^a$, and $s=3^b$. Then the system becomes -r+2s=1, 3r-4s=1. Adding three times the first equation to the second gives $2s=4\Rightarrow s=2$. Substituting s=2 into -r+2s=1 yields $-r+2(2)=1\Rightarrow r=3\Rightarrow [r,s]=[3,2]$. Since $a=\log_2 r$ and $b=\log_3 s$, the solution is $[a,b]=[\log_2 3,\log_3 2]$.