1 Vectors

L

Following Example 1.24, we realize we need to find two direction vectors, u and v.
Since P =(1,1,1), @ = (4,0,2), and R = (0,1, 1) e in plane &, we compute:

— 3 . -1
u=PQ=q-p=|-1|andv=PR=r—p= Q4.
1 -2
Since u and v are not scalar multiples of each other, they will serve as direction vectors.
If u and v were scalar multiples of each othez, we would not have a plane but simply 2 line.

Therefore, we have the vector equation of & z 1 3 -1
yl=11]+s|=1}|+t 0

@, z 1 1 -2

Fbllowing Example 1.24, we realize we need to find two direction vectors, u and V.
I Since P = (1,0,0), @ =(0,1,0), and R = (0,0,1) lie in plane &, we compute:

u=PQ=q-p= 1| andv=PR=r—p= 0
0 1

Since u and v are not scalar multiples of each other, they will serve as direction vectors.
If u and v were scalar multiples of each other, we would not have a plane but simply & line.

Therefore, we have the vector equation of G x 1 -1 -1
yi=10|+s 1] 4t 0
z 0 0 1

{5. The parametric equations and associated vector forms X = p+td found below are not unique.

(a) As in the remarks prior to Example 1.20, we begin by letting z = t. .
When we substitute z = t into y = 3z —1, weget y = 3 (t)—1. So, we have the following:

. : T = t z 0 1
Parametric equations y=—143t and vector form [ v ] = [ -1 } +t [3 }

{b) In this case since the coefficient of 3 is 2, we begin by letting = = 2¢.
When we substitute z = 2t into 3z + 2y =5, we get 3(2t) + 2y = 5.
Solving for y yields y = —3t +2.5. S0, we have the following:

. .. T= 2t z| | 0O 2
Parametric equations: y=25—3t and vector form [ Y } = { 25 } +1 [ _3 ]

We discover the following pattern: if line £ has equation ax + by =c,thend = _2 .

e R
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30 1 Vectors

5. Following Example 1.21, we will: :
(a) find the vector form by substituting into x =p + td and
{b) find the parametric form by equating components.

(= 0 1 z 0 1]
(a) x= |y |, p= 0],andd=1| -1 = The vector form is | ¥ | = ol+t]|-1].
z 0 4 : ' z 0 4
' t

(b} The vector form in (a) implies the parametric formis y = —1.
: z= 4

6. Following Example 1.21, we will:
(a) find the vector form by substituting irito x =P +td and
(b) find the parametric form by equating components.

x R 0 ' z 3 0
(ayx= |y |, P= 0],andd = | 2 | = The vector formis | ¥ | = o] +tt 2.
z -2 5 _ z -2
.

. T =
{b) The vector form in (a) implies the parametric formis ¥y = 2t .

@g ‘ _ z=—2+5t
bFolloWing Example 1.23, we wilk: :

(a) find the normal form by substituting into n-x=x-p and
(b) find the general form by computing those dot products.

3 x 0 3 x 3 0
(@) n=|2|,x=|¥yLP™ 1 | = The normal formis | 2 [-| ¥ | = 21111 =2
1 z 0 _ 1 z 1 0
3 T ‘ 31 10 .
m 1211y = 3z+oy+zand |2 |- 1| =2= The general form is 3¢ +2y+2 = 2.
1 z 11 0

8. Following Example 1.23, we will:
{a) find the normal form by substituting into n-x =n-p and
(b) find the general form by computing those dot products.

1 T —3 1 z 1 -3
(@) n=|-1].x=¥%|:P= 5 | = Normalform | -1 |- y|=|-11] 5=
5 { J 1 5} z] 5 !
—-3.
1 x 1 -3 '
) | —11" y} = £—y-+52, -1} . { 5] = —3 => The general form is z—y+5z=—t
5 z 5 o1 ‘

o
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1 Vectors

Need to show £; with slope m; is perpendicular to £; with slope my if and only if myma = —1.
By definition, one possible form of the general equation for £; with slope mq'is —miz+y = b1.

So, the normal vector for £; is ny = [ —?17“»1 ] and the normal vector for &3 is ny = [ _T’z }

Now we note £ is perpendicular to line 5 if and only if n; - m2 = 0, so we have:

ny-ng = [ _?1 } - [ _Tl ] =myme+1=0 which implies myme = ~1 as we were to show.

Given d is the direction vector of line £ and n is the normal vector to the plane &2, we have:
If d and n are orthogonal which implies d - n = 0, then line £ is parallel to plane Z2.
If d and n are parallel which implies d = cn (scalar multiples), then £ is perpendicular to &7

: 2
(a) Since the general form of & is 2z + 3y —z =1, its normal vector is n = 31 =d.
. : _1

4]

(b} Since the general form of & is 4z —y + 5z = 0, its normal vector is n = [ -1

Since d = 1n, { is perpendicular to .

5

2 4 3 ,
Since d-n'= [ 3:\ . 71:l =2.443-(=1)+(-1)-5=0, £ is parallel to &.
-1 5 | :

1
{c) Since the general form of & is z — y — z = 3, its'normal vector is n = { -1 :l .
| ‘ -1

2 1 | '
Sinced-n= { 3:\ . ['ml} =2-14+3-(=1)+(-1) - (~1) =0, £ is parallel to &.
—1 —1

‘ ‘ 4
(d) Since the general form of & is 4z + 6y — 2z = 0, its normal vector is n = [ 6:| .
-2

: 2 4 .
Since d = 3| = { 6| = %n, £ is perpendicular to 2.
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30.

- Now for d(Q, &) =

S0 d(Q,P) =

1 Vectors

lazg + byo + czg — d!
Va? + b+ 2

By definition az + by + ¢z = d implies n = [a,b,c, so z+y—2=0impliesn = 1,1, -1].

As suggested by Figure 1.64, we need to calculate the length of @) = proj,(v), where v = P‘_Cj

Step 1. By trial and error, we find P = (1,0, 1) satisfles s +y — z = 0.

. 2 1 1
Step2. v=PQ=q-p=|2{-|0|=]2].
2 1 1

We will follow Example 1.26, then use d(Q, P =

and compare results.

1 1 [ 2/3
coon  frevy o f1-141-2-1-1 _2 _
v i = (- (5257) 1] -2 2] - 2]
2/3 1
Step 4. The distance from Q to 2 is ||proj (v)| = 2/3 =-§- Sl |I= 2@
—2/3 ~1 3

H
!
- azg + by + czp — d| }

Now for d(Q, &) = we need identify a, b, ¢, d, and zq, 30, 2o.

va? + b2 - c? ‘
Sincez+y—z=0,a=1,b=1,¢=—-1,d=0. From @ =(2,2,2), zp =y = 2z = 2..
|2+2—2+0] 2 2V3

VeI (2 V33

We will follow Example 1.26, then use d(Q, &) =

as we found by following Exampie 1.26.

lazo + byo + czp — dJ
Va? +b2% 4 2
By definition oz + by + cz = d implies n = [a,b,¢], 50 z — 2y + 22 = 1 implies n = [1

.and compare results.

,—2,2
As suggested by Figure 1.64, we need to calculate the length of RQ proj,{v), where v = 1_55 :
Step 1. By trial and error, we find P = (1,0,0) satisfies z — 2y+2z=1. '

- . 0 1 -1
Step2. v=PQ=q-p=|0|-{0]| = 0.
0 0 0
)—(ﬂ)n— ~1:1+0-040-0 _; ___{F_; _
- d-n O\ 124 (=224 22 o 9 -
Step 4. The distance from Q to & is ||proj,(v)|| = H [ 2/9:' ‘ ;
—2/9 :

we need identify a, b, ¢, d, and zq, yg, 2.

Step 3. projn(v

lazo + byp + czo — d]

VET PRI E
Sincez—2y+2z=1,a‘=1,b=-2,c=2,d=1.F‘romQ:(0,0;D),x[):yg:zo:
So d(Q, P) = 0-0+0-1] 1

V3 8

as we found by following Example 1.26.

VT




40

&0

26. Finding the distance between points A and B is equivalent to finding d(a; b).

1 Vectors s

Given x = (z,¥,%], P = [1,0,—2], and q =[5, 2, 4], we have the condition d(x,p) = d(x,9).

We simplify that equation to find the condition all points X = (z,y, z) must satisfy.

dp) = E -1+ (40P +(z+2° = /(@8 + -2+ (z - 4" = dbxa).

Squaring both sides, we have: (z - 1)%+(y — 0 +(z+ 9% = (z — 5 +(y — 24 (z — 4’ =
(-2 1)+ + (P e+ )= (22— 10z +25) + (4 — 4y + 4) + (2% — 8z + 16).

Noting the squares cancel and combining the other like terms, we have: 8z + 4y + 122 = 40.
Dividing both sides by 4, we see all points X = (z,v, z) lie in the plane 2z +y + 3z =10.

et et L g e

;:J
-
o

. - lazo + byo — ¢
We will first follow Example 1.25, then use d(Q,€) = ———7 and compare results.
i1 firt follow Example 1.25, ¢ @O==rFrw p |

Comparing {Z] = [P;]-;-t[_i] tox = p+1td, we see £ has P = (—1,2) andd = [_1}

As suggested by Figure 1.63, we need to calculate the length of I_%Ej,
where R is the point on £ at the foot of the perpendicular from .

— — —
Now if we let v = PQ, then PR = projq(v) and RQ =v — proja(v).

sov=Fa-o-p=[3] [ 3]~ o)
s osde= (§55) o= (ereen) 23 4] - [38)

Step 3. The vector we want is v — proja(v) = [ g ] - [ _gg l = {iﬁ l

Step 4. The distance d(Q, &) from. Q to £ is v — proja(v)ll = H [ gﬁ } H
So Theorem 1.3(b) implies [Iv ~ projg(v} || = % H[ : } ” =i

. azg + byo — ¢ . -
Now in order to calculate d(@, %) = L——-—— we need to put £ into general form.
(@9 P P g

a b a b 1 |1
Ifd= [b],thenn= [__a]because [b]'[—a] =0.Forf,d= [_1} son= [1]

1 & 1 -1
From n - x = n-p we have Ll{y} = [1}[ 2} sq:c-i—y—lénda,-b—c—l.

Furthermore, since Q = (2,2) = (%o, %o) we have zp =y = 2.
2+2- 2 n
So d(@,4) = ‘—_i_——ll = 3 = % exactly as we found by following Example 1.25.

VEFZ V2
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25. Pollowing Example 1.23, we will determine the general equations in two simple steps:
First, we will use Figure 1.31 in Section 1.2 to find a normal vector n and a point vector p.
Then we will substitute into n-x = n-p and compute the dot products to find the equations.

(a) We start with £; determined by the face of the cube in the yz-plane.

1
I% is clear that a normel vector for %) isn = | 0 | or any vector parallel to the z-axis.
0
! 0
i Also we see that &) passes through the origin £ = (0,0,0), so weset p= | 0
. 0
1 x 1 0
Substitutinginton-x =n-pyields |0 |- |y | =[0|-| 0| or 1-2+0-y+0-2=0.
0 z 0 0

So, the general equation for &y determined by the face in the yz-plane is x = 0.
Likewise, the general equation for &, determined by the face in the zz-plane is y = 0
and the general equation for &3 determined by the face in the zy-plane is z = 0.

We have found equations for the planes that pass through the origin.

We will use this information to find equations for the planes that pass through (1,1,1).
We begin with £, passing through the face parallel to the face in the yz-plane.

A 1
Since &4 is parallel to the face in the yz-plane, its normal vector isn = | 0
0
1
As previously noted %4 passes through the point P = (1,1,1),so weset p= | 1
. , 1
. _ 17 [= 1] [
Substitutinginton-x =n-pyields |0 |- |y | =1 |-|0] or 1.2+0.y4+0.2=1.
0 z 1 0

So, the general equation for &4 is x = 1.
Likewise, the general equations for &5 and % are y = 1 and z = 1 respectively.




