HWH: 1,4,5, (1), (2) (20)

1.3 Lines and Planes

29

1.3 Lines and Planes

BI

Following Example 1.20, we will:

- (a) find the normal form by substituting into $n \cdot x = n \cdot p$ and
- (b) find the general form by computing those dot products.

(a)
$$\mathbf{n} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$, and $\mathbf{p} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow$ The normal form is $\begin{bmatrix} 3 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0$.

(b)
$$\begin{bmatrix} 3 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = 3x + 2y$$
 and $\begin{bmatrix} 3 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0 \Rightarrow$ The general form is $3x + 2y = 0$.

(2.)Following Example 1.20, we will:

- (a) find the normal form by substituting into $n \cdot x = n \cdot p$ and
- (b) find the general form by computing those dot products.

(a)
$$\mathbf{n} = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$, $\mathbf{p} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \Rightarrow \text{Normal form is } \begin{bmatrix} 5 \\ -3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = -1$.

(b)
$$\begin{bmatrix} 5 \\ -3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = 5x - 3y$$
 and $\begin{bmatrix} 5 \\ -3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 0 \Rightarrow$ The general form is $5x - 3y = -1$.

3. Following Example 1.21, we will:

- (a) find the vector form by substituting into x = p + td and
- (b) find the parametric form by equating components.

(a)
$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$
, $\mathbf{p} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and $\mathbf{d} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \Rightarrow$ The vector form is $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 3 \end{bmatrix}$.

(b) The vector form in (a) implies the parametric form is $\begin{array}{c} x=1-t \\ y=3t \end{array}$

4. Following Example 1.21, we will:

- (a) find the vector form by substituting into x = p + td and
- (b) find the parametric form by equating components.

(a)
$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$
, $\mathbf{p} = \begin{bmatrix} -4 \\ 4 \end{bmatrix}$, and $\mathbf{d} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow$ The vector form is $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -4 \\ 4 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

(b) The vector form in (a) implies the parametric form is $\begin{aligned}
x &= -4 + t \\
y &= 4 + t
\end{aligned}$

9. I

10. F

11. F

Α

Τ

12. F

SC

Α

Τ

Following Example 1.21, we will:

- (a) find the vector form by substituting into x = p + td and
- (b) find the parametric form by equating components.

(a)
$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
, $\mathbf{p} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, and $\mathbf{d} = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$ \Rightarrow The vector form is $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$.

$$x = x$$

- (b) The vector form in (a) implies the parametric form is y = -t.
- 6 Following Example 1.21, we will:
 - (a) find the vector form by substituting into x = p + td and
 - (b) find the parametric form by equating components.

(a)
$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
, $\mathbf{p} = \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix}$, and $\mathbf{d} = \begin{bmatrix} 0 \\ 2 \\ 5 \end{bmatrix}$ \Rightarrow The vector form is $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix} + t \begin{bmatrix} 0 \\ 2 \\ 5 \end{bmatrix}$.

$$x = 3$$

- (b) The vector form in (a) implies the parametric form is y = 2tz = -2 + 5t
- 7. Following Example 1.23, we will:
 - (a) find the normal form by substituting into $n \cdot x = n \cdot p$ and
 - (b) find the general form by computing those dot products.

(a)
$$\mathbf{n} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, $\mathbf{p} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \Rightarrow$ The normal form is $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = 2$.

(b)
$$\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 3x + 2y + z \text{ and } \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = 2 \Rightarrow \text{The general form is } 3x + 2y + z = 2.$$

- 8. Following Example 1.23, we will:
 - y'(a) find the normal form by substituting into $n \cdot x = n \cdot p$ and
 - (b) find the general form by computing those dot products.

(a)
$$\mathbf{n} = \begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, $\mathbf{p} = \begin{bmatrix} -3 \\ 5 \\ 1 \end{bmatrix} \Rightarrow \text{Normal form } \begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ 5 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 5 \\ 1 \end{bmatrix}$

(b)
$$\begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = x - y + 5z, \begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ 5 \\ 1 \end{bmatrix} = -3 \Rightarrow \text{The general form is } x - y + 5z = -3.$$

1.3 Lines and Planes

9. Following Example 1.24, we will:

- (a) find the vector form by substituting into x = p + su + tv and
- (b) find the parametric form by equating components.

(a)
$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
, $\mathbf{p} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix} \Rightarrow$
The vector form is $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} + t \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$.

$$x = 2s - 3t$$

- (b) The vector form in (a) implies the parametric form is $\begin{array}{ccc} y = s + 2t \\ z = 2s + t \end{array}$
- 10. Following Example 1.24, we will:
 - (a) find the vector form by substituting into x = p + su + tv and
 - (b) find the parametric form by equating components.

(a)
$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
, $\mathbf{p} = \begin{bmatrix} 6 \\ -4 \\ -3 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \Rightarrow$
The vector form is $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ -4 \\ -3 \end{bmatrix} + s \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$.

$$x = 6 - t$$

(b) The vector form in (a) implies the parametric form is y = -4 + s + t

$$z = -3 + s + 1$$

11. Following Example 1.24, we realize we may choose any point on ℓ , so we will use P (Q would also be fine).

A convenient direction vector is $\mathbf{d} = \overrightarrow{PQ} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ (or any scalar multiple of this).

Thus we obtain:
$$x = p + td$$

123

$$= \left[\begin{array}{c} 1 \\ -2 \end{array}\right] + t \left[\begin{array}{c} 2 \\ 2 \end{array}\right].$$

12. Following Example 1.24, we realize we may choose any point on ℓ , so we will use P (Q would also be fine).

A convenient direction vector is $\mathbf{d} = \overrightarrow{PQ} = \begin{bmatrix} -2 \\ 0 \\ 4 \end{bmatrix}$ (or any scalar multiple of this).

Thus we obtain:
$$x = p + td$$

$$= \begin{bmatrix} 0\\1\\-1 \end{bmatrix} + t \begin{bmatrix} -2\\0\\4 \end{bmatrix}.$$

When n_1 is the normal vector of \mathscr{P}_1 and n is the normal vector of \mathscr{P} , we have: n_1 and n are orthogonal which implies $n_1 \cdot n = 0$, then \mathscr{P}_1 is perpendicular to \mathscr{P} . n_1 and n are parallel which implies $n_1 = cn$ (scalar multiples), then \mathscr{P}_1 is parallel to \mathscr{P} .

- (a) Since the general form of \mathscr{P} is 2x + 3y z = 1, its normal vector is $\mathbf{n} = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$. Since $\mathbf{n}_1 \cdot \mathbf{n} = \begin{bmatrix} 4 \\ -1 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} = 4 \cdot 2 + (-1) \cdot 3 + 5 \cdot (-1) = 0$, \mathscr{P}_1 is perpendicular to \mathscr{P} .
- (b) Since the general form of \mathscr{D} is 4x y + 5z = 0, its normal vector is $\mathbf{n} = \begin{bmatrix} 4 \\ -1 \\ 5 \end{bmatrix}$. Since $\mathbf{n}_1 = 1\mathbf{n}$, \mathscr{D}_1 is parallel to \mathscr{D} .
- (c) Since the general form of \mathscr{P} is x y z = 3, its normal vector is $\mathbf{n} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$. Since $\mathbf{n}_1 \cdot \mathbf{n} = \begin{bmatrix} 4 \\ -1 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} = 0$, \mathscr{P}_1 is perpendicular to \mathscr{P} .
- (d) Since the general form of \mathscr{D} is 4x + 6y 2z = 0, its normal vector is $\mathbf{n} = \begin{bmatrix} 4 \\ 6 \\ -2 \end{bmatrix}$.

Since
$$\mathbf{n}_1 \cdot \mathbf{n} = \begin{bmatrix} 4 \\ -1 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 6 \\ -2 \end{bmatrix} = 0$$
, \mathscr{P}_1 is perpendicular to \mathscr{P} .

20. Since the vector form is x = p + td, we use the given information to determine p and d.

The general equation of the given line is 2x - 3y = 1, so its normal vector is $\mathbf{n} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$.

Our line is perpendicular to the given line, so it has direction vector $\mathbf{d} = \mathbf{n} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$.

Furthermore, since our line passes through the point P=(2,-1), we have $\mathbf{p}=\begin{bmatrix}2\\-1\end{bmatrix}$.

So, the vector form of the line perpendicular to 2x-3y=1 through the point P=(2,-1) is

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} + t \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$$