Linear Systems

h 214 Spring 2008

Most Product (5, 1) (7) (9, 25) (4) (4)

fact

12 Length and Angle: The Dot Product

1.2 Length and Angle: The Dot Product

- 1. Following Example 1.8, $\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 1 \end{bmatrix} = (-1) \cdot 3 + 2 \cdot 1 = -3 + 2 = -1$.
- Following Example 1.8, $\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} 3 \\ -2 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 6 \end{bmatrix} = 3 \cdot 4 + (-2) \cdot 6 = 12 12 = 0.$

3.
$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} = 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 1 = 2 + 6 + 3 = 11.$$

4. $\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} 3.2 \\ -0.6 \\ -1.4 \end{bmatrix} \cdot \begin{bmatrix} 1.5 \\ 4.1 \\ -0.2 \end{bmatrix} = (3.2) \cdot (1.5) + (-0.6) \cdot (4.1) + (-1.4) \cdot (-0.2) = 2.62.$

$$\underbrace{\begin{pmatrix} \mathbf{5} \end{pmatrix}} \mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \sqrt{3} \\ 0 \end{bmatrix} \cdot \begin{bmatrix} \frac{4}{-\sqrt{2}} \\ 0 \\ -5 \end{bmatrix} = 1 \cdot 4 + (\sqrt{2}) \cdot (-\sqrt{2}) + \sqrt{3} \cdot 0 + 0 \cdot (-5) = 4 - 2 = 2.$$

6.
$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} 1.12 \\ -3.25 \\ 2.07 \\ -1.83 \end{bmatrix} \cdot \begin{bmatrix} -2.29 \\ 1.72 \\ 4.33 \\ -1.54 \end{bmatrix} = -1.12 \cdot 2.29 + 1.72 \cdot 4.33 + 1.83 \cdot 1.54 = 3.6265.$$

7. In the remarks prior to Example 1.11, we note that finding a unit vector **v** in the same direction as a given vector **u** is called *normalizing* the vector **u**.

Therefore, we proceed as in Example 1.12:

$$\|\mathbf{u}\| = \sqrt{(-1)^2 + 2^2} = \sqrt{5}$$
, so a unit vector \mathbf{v} in the same direction as \mathbf{u} is $\mathbf{v} = (1/\|\mathbf{u}\|) \, \mathbf{u} = (1/\sqrt{5}) \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}$.

8. Following Example 1.12, we have:

$$\begin{split} \|\mathbf{u}\| &= \sqrt{3^2 + (-2)^2} = \sqrt{13}, \text{ so a unit vector } \mathbf{v} \text{ in the same direction as } \mathbf{u} \text{ is} \\ \mathbf{v} &= (1/\|\mathbf{u}\|)\,\mathbf{u} = \left(1/\sqrt{13}\right) \left[\begin{array}{c} 3 \\ -2 \end{array} \right] = \left[\begin{array}{c} 3/\sqrt{13} \\ -2/\sqrt{13} \end{array} \right]. \end{split}$$

9. Following Example 1.12, we have:

 $\|\mathbf{u}\| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$, so a unit vector \mathbf{v} in the same direction as \mathbf{u} is

$$\mathbf{v} = (1/\|\mathbf{u}\|)\,\mathbf{u} = (1/\sqrt{14})\begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{14}\\2/\sqrt{14}\\3/\sqrt{14} \end{bmatrix}.$$

10. Following Example 1.12, we have:

$$\|\mathbf{u}\| = \sqrt{(3.2)^2 + (-0.6)^2 + (-1.4)^2} = \sqrt{12.56}$$
, so unit vector \mathbf{v} in the same direction as \mathbf{u}

is
$$\mathbf{v} = (1/\|\mathbf{u}\|) \,\mathbf{u} = (1/\sqrt{12.56}) \begin{bmatrix} 3.2 \\ -0.6 \\ -1.4 \end{bmatrix} = \begin{bmatrix} 3.2/\sqrt{12.56} \\ -0.6/\sqrt{12.56} \\ -1.4/\sqrt{12.56} \end{bmatrix} \approx \begin{bmatrix} 0.2548 \\ -0.0478 \\ -0.1115 \end{bmatrix}.$$

$$\|\mathbf{u}\| = \sqrt{1^2 + (\sqrt{2})^2 + (\sqrt{3})^2 + 0^2} = \sqrt{6}, \text{ so a unit vector in the direction of } \mathbf{u} \text{ is}$$

$$\mathbf{v} = (1/\|\mathbf{u}\|)\,\mathbf{u} = (1/\sqrt{6})\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \sqrt{3} \\ 0 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{6} \\ \sqrt{2}/\sqrt{6} \\ \sqrt{3}/\sqrt{6} \\ 0/\sqrt{6} \end{bmatrix} = \begin{bmatrix} 1/\sqrt{6} \\ 1/\sqrt{3} \\ 1/\sqrt{2} \\ 0 \end{bmatrix} = \begin{bmatrix} \sqrt{6}/6 \\ \sqrt{3}/3 \\ \sqrt{2}/2 \\ 0 \end{bmatrix}.$$

12.
$$\|\mathbf{u}\| = \sqrt{(1.12)^2 + (-3.25)^2 + (2.07)^2 + (-1.83)^2} = \sqrt{19.4507}$$
, so the unit vector \mathbf{v} is

$$\mathbf{v} = (1/\|\mathbf{u}\|) \,\mathbf{u} = (1/\sqrt{19.4507}) \begin{bmatrix} 1.12 \\ -3.25 \\ 2.07 \\ -1.83 \end{bmatrix} = \begin{bmatrix} 1.12/\sqrt{19.4507} \\ -3.25/\sqrt{19.4507} \\ 2.07/\sqrt{19.4507} \\ -1.83/\sqrt{19.4507} \end{bmatrix} \approx \begin{bmatrix} 0.2540 \\ -0.7369 \\ 0.4694 \\ -0.4149 \end{bmatrix}.$$

13. Following Example 1.13, we compute:
$$\mathbf{u} - \mathbf{v} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} - \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}$$
, so $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = -\sqrt{(-4)^2 + 1^2} = \sqrt{17}$.

14. Following Example 1.13, we compute:
$$\mathbf{u} - \mathbf{v} = \begin{bmatrix} 3 \\ -2 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} = \begin{bmatrix} -1 \\ -8 \end{bmatrix}$$
, so
$$\mathbf{d}(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = -\sqrt{(-1)^2 + (-8)^2} = \sqrt{65}.$$

15. Following Example 1.13, we compute:
$$\mathbf{u} - \mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}$$
, so
$$\mathbf{d}(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = -\sqrt{(-1)^2 + (-1)^2 + 2^2} = \sqrt{6}.$$

16. Following Example 1.13, we compute:
$$\mathbf{u} - \mathbf{v} = \begin{bmatrix} 3.2 \\ -0.6 \\ -1.4 \end{bmatrix} - \begin{bmatrix} 1.5 \\ 4.1 \\ -0.2 \end{bmatrix} = \begin{bmatrix} 1.7 \\ -4.7 \\ -1.2 \end{bmatrix}$$
, so $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = -\sqrt{(1.7)^2 + (-4.7)^2 + (-1.2)^2} = \sqrt{26.42} \approx 5.14$.

(25.) As in Example 1.14, we begin by calculating
$$\mathbf{u} \cdot \mathbf{v}$$
 (because if $\mathbf{u} \cdot \mathbf{v} = 0$ we're done. Why?):
$$\mathbf{u} \cdot \mathbf{v} = 2 \cdot 1 + (-1) \cdot (-2) + 1 \cdot (-1) = 2 + 2 - 1 = 3,$$

$$\|\mathbf{u}\| = \sqrt{2^2 + (-1)^2 + 1^2} = \sqrt{6}, \text{ and } \|\mathbf{v}\| = \sqrt{1^2 + (-2)^2 + (-1)^2} = \sqrt{6}.$$
 Therefore, $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{3}{\sqrt{6}\sqrt{6}} = \frac{1}{2}, \text{ so } \theta = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \text{ radians or } 60^{\circ}.$

26. As in Example 1.14, we begin by calculating $\mathbf{u} \cdot \mathbf{v}$:

As in Example 1.14, we begin by calculating
$$\mathbf{u} \cdot \mathbf{v} = 4 \cdot 1 + 3 \cdot (-1) + (-1) \cdot 1 = 4 - 3 - 1 = 0 \Rightarrow \cos \theta = 0 \Rightarrow \theta$$
 is right.

$$\mathbf{u} \cdot \mathbf{v} = 4 \cdot 1 + 3 \cdot (-1) + (-1) \cdot 1 = 4 - 3 - 1 = 0 \Rightarrow \cos \theta = 0 \Rightarrow \theta \text{ is right.}$$

If we wished to be more explicit, we could continue following Example 1.15:

we wished to be more explicit, we could solve
$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{0}{\|\mathbf{u}\| \|\mathbf{v}\|} = 0$$
, so $\theta = \cos^{-1}(0) = \frac{\pi}{2}$ radians or 90° .

27. Following Example 1.14, we calculate:

owing Example 1.14, we calculate:

$$\mathbf{u} \cdot \mathbf{v} = (0.9) \cdot (-4.5) + (2.1) \cdot (2.6) + (1.2) \cdot (-0.8) = 0.45,$$

$$\|\mathbf{u}\| = \sqrt{(0.9)^2 + (2.1)^2 + (1.2)^2} = \sqrt{6.66}, \text{ and}$$

$$\|\mathbf{v}\| = \sqrt{(-4.5)^2 + (2.6)^2 + (-0.8)^2} = \sqrt{27.65}.$$

Therefore,
$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{0.45}{\sqrt{6.66}\sqrt{27.65}} = \frac{0.45}{\sqrt{182.817}},$$

so $\theta = \cos^{-1}\left(\frac{0.45}{\sqrt{182.817}}\right) \approx 1.5375 \text{ radians or } 88.09^{\circ}.$

Note: To minimize error, we do not approximate until the last step.

Since $\frac{0.45}{\sqrt{182.817}} \approx 0.0332816$ is a positive number close to zero,

we should expect θ to be close to but less than 90°. Why?

28. Following Example 1.14, we calculate:

wing Example 1.14,
$$\mathbf{u} \cdot \mathbf{v} = 1 \cdot (-3) + (-2) \cdot 1 + 3 \cdot (-1) + 3 \cdot 4 = -4,$$

$$\|\mathbf{u}\| = \sqrt{1^2 + (-2)^2 + 3^2 + 4^2} = \sqrt{30}, \text{ and}$$

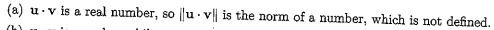
$$\|\mathbf{v}\| = \sqrt{(-3)^2 + 1^2 + (-1)^2 + 1^2} = \sqrt{12}.$$

Therefore,
$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{-4}{\sqrt{30}\sqrt{12}} = -\frac{2}{3\sqrt{10}}$$
,

so
$$\theta = \cos^{-1}\left(-\frac{2}{3\sqrt{10}}\right) \approx 1.7832$$
 radians or 102.17° .

Note: To minimize error, we do not approximate until the last step.

Since $-\frac{2}{3\sqrt{10}} \approx -0.2108185$ is a negative number close to zero, we should expect θ to be close to but greater than 90°. Why?



- (b) $\mathbf{u} \cdot \mathbf{v}$ is a scalar, while \mathbf{w} is a vector. Thus, $\mathbf{u} \cdot \mathbf{v} + \mathbf{w}$ adds a scalar to a vector, which is not a defined operation.
- (c) u is a vector, while v · w is a scalar.
 Thus, u · (v · w) is the dot product of a vector and a scalar, which is not defined.
- (d) $c \cdot (\mathbf{u} + \mathbf{v})$ is the dot product of a scalar and a vector, which is not defined.

18. From trigonometry, we have:

 $\cos \theta > 0 \Rightarrow \theta$ is acute, $\cos \theta < 0 \Rightarrow \theta$ is obtuse, and $\cos \theta = 0 \Rightarrow \theta$ is right. From $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$, we see $\mathbf{u} \cdot \mathbf{v}$ determines the sign of $\cos \theta$. Why?

Therefore, as in Example 1.14, we calculate:

$$\mathbf{u} \cdot \mathbf{v} = 3 \cdot (-1) + 0 \cdot 1 = -3 < 0 \Rightarrow \cos \theta < 0 \Rightarrow \theta$$
 is obtuse.

19. From trigonometry, we have:

 $\cos \theta > 0 \Rightarrow \theta$ is acute, $\cos \theta < 0 \Rightarrow \theta$ is obtuse, and $\cos \theta = 0 \Rightarrow \theta$ is right.

From $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$, we see $\mathbf{u} \cdot \mathbf{v}$ determines the sign of $\cos \theta$. Why?

Therefore, as in Example 1.14, we calculate:

$$\mathbf{u}\cdot\mathbf{v}=2\cdot\mathbf{1}+(-1)\cdot(-2)+\mathbf{1}\cdot(-1)=4>0\Rightarrow\cos\theta>0\Rightarrow\theta\text{ is acute.}$$

20. Following the first step in Example 1.14, we calculate:
$$1.1 \times 1.1 \times 1.1$$

$$\mathbf{u} \cdot \mathbf{v} = 4 \cdot 1 + 3 \cdot (-1) + (-1) \cdot 1 = 4 - 3 - 1 = 0 \Rightarrow \cos \theta = 0 \Rightarrow \theta$$
 is right.
21. Following the first step in Example 1.14, we calculate:

$$\mathbf{u} \cdot \mathbf{v} = (0.9) \cdot (-4.5) + (2.1) \cdot (2.6) + (1.2) \cdot (-0.8) = 0.45 \Rightarrow \cos \theta > 0 \Rightarrow \theta \text{ is acute.}$$

22.
$$\mathbf{u} \cdot \mathbf{v} = 1 \cdot (-3) + (-2) \cdot 1 + 3 \cdot (-1) + 3 \cdot 4 = -4 \Rightarrow \cos \theta < 0 \Rightarrow \theta \text{ is obtuse.}$$

23. Since
$$\mathbf{u} \cdot \mathbf{v}$$
 is obviously > 0 , we have $\cos \theta > 0$ which implies θ is acute. Note: $\mathbf{u} \cdot \mathbf{v}$ is > 0 because the components of both \mathbf{u} and \mathbf{v} are positive.

24. As in Example 1.14, we begin by calculating
$$\mathbf{u} \cdot \mathbf{v}$$
 (if $\mathbf{u} \cdot \mathbf{v} = 0$, we're done. Why?):

$$\mathbf{u} \cdot \mathbf{v} = 3 \cdot (-1) + 0 \cdot 1 = -3, \ \|\mathbf{u}\| = \sqrt{3^2 + 0^2} = \sqrt{9} = 3, \ \|\mathbf{v}\| = \sqrt{(-1)^2 + 1^2} = \sqrt{2}.$$

So,
$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{-3}{3\sqrt{2}} = -\frac{\sqrt{2}}{2}$$
 and $\theta = \cos^{-1}\left(-\frac{\sqrt{2}}{2}\right) = \frac{3\pi}{4}$ radians or 135°.

42. Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $[\Leftrightarrow]$ their dot product is zero. That is $\mathbf{u} \cdot \mathbf{v} = 0$. So, we set $\mathbf{u} \cdot \mathbf{v} = 0$ and solve for k:

$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} k+1 \\ k-1 \end{bmatrix} = 0 \Rightarrow 2(k+1) + 3(k-1) = 0 \Rightarrow 5k-1 = 0 \Rightarrow k = \frac{1}{5}.$$

Substituting
$$k$$
 back into the expression for \mathbf{v} we get: $\mathbf{v} = \begin{bmatrix} \frac{1}{5} + 1 \\ \frac{1}{5} - 1 \end{bmatrix} = \begin{bmatrix} \frac{6}{5} \\ -\frac{4}{5} \end{bmatrix}$.

We check our answer by computing $\mathbf{u} \cdot \mathbf{v}$ (it should be zero):

$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} \frac{6}{5} \\ -\frac{4}{5} \end{bmatrix} = \frac{12}{5} - \frac{12}{5} = 0$$
 as required.

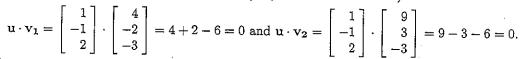
43. Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $[\Leftrightarrow]$ their dot product is zero. That is $\mathbf{u} \cdot \mathbf{v} = 0$. So, we set $\mathbf{u} \cdot \mathbf{v} = 0$ and solve for k:

$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} k^2 \\ k \\ -3 \end{bmatrix} = 0 \Rightarrow k^2 - k - 6 = (k+2)(k-3) = 0 \Rightarrow k = -2, 3.$$

Substituting k back into the expression for \mathbf{v} we get:

When
$$k = -2$$
, $\mathbf{v}_1 = \begin{bmatrix} (-2)^2 \\ -2 \\ -3 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \\ -3 \end{bmatrix}$. When $k = 3$, $\mathbf{v}_2 = \begin{bmatrix} 3^2 \\ 3 \\ -3 \end{bmatrix} = \begin{bmatrix} 9 \\ 3 \\ -3 \end{bmatrix}$.

We check by computing $\mathbf{u} \cdot \mathbf{v}_1$ and $\mathbf{u} \cdot \mathbf{v}_2$ (they should both be zero):



Two vectors **u** and **v** are orthogonal *if and only if* $[\Leftrightarrow]$ their dot product is zero. That is $\mathbf{u} \cdot \mathbf{v} = 0$. So, we set $\mathbf{u} \cdot \mathbf{v} = 0$ and solve for y in terms of x:

$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = 0 \Rightarrow 3x + y = 0 \Rightarrow y = -3x.$$

Substituting
$$y = -3x$$
 back into the expression for \mathbf{v} we get: $\mathbf{v} = \begin{bmatrix} x \\ -3x \end{bmatrix} = x \begin{bmatrix} 1 \\ -3 \end{bmatrix}$.

Conclusion: Any vector orthogonal to
$$\begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 must be a multiple of $\begin{bmatrix} 1 \\ -3 \end{bmatrix}$.

Check:
$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ -3x \end{bmatrix} = 3x - 3x = 0$$
 for all values of x .

Note: We could also have solved for
$$x$$
 in terms of y yielding $\mathbf{v} = \begin{bmatrix} -\frac{1}{3}y \\ y \end{bmatrix} = y \begin{bmatrix} -\frac{1}{3} \\ 1 \end{bmatrix}$.

47. We prove Theorem 1.2(b) by applying the definition of the dot product.

$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = u_1 (v_1 + w_1) + u_2 (v_2 + w_2) + \dots + u_n (v_n + w_n)$$

$$= u_1 v_1 + u_1 w_1 + u_2 v_2 + u_2 w_2 + \dots + u_n v_n + u_n w_n$$

$$= (u_1 v_1 + u_2 v_2 + \dots + u_n w_n) + (u_1 w_1 + u_2 w_2 + \dots + u_n w_n)$$

$$= \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}.$$

48. We prove the three parts of Theorem 1.2(d)

by applying the definition of the dot product and key properties of real numbers.

- Part 1: For any vector \mathbf{u} , we need to show $\mathbf{u} \cdot \mathbf{u} \geq 0$. We begin by noting that for any real number x, we have $x^2 \geq 0$. So, $\mathbf{u} \cdot \mathbf{u} = u_1u_1 + u_2u_2 + \cdots + u_nu_n = u_1^2 + u_2^2 + \cdots + u_n^2 \geq 0$. Note: $u_1^2 + u_2^2 + \cdots + u_n^2 \geq 0$ because the u_i are real numbers.
- Part 2: We need to show if $\mathbf{u} = \mathbf{0}$, then $\mathbf{u} \cdot \mathbf{u} = \mathbf{0}$.

 We begin by noting that if $\mathbf{u} = \mathbf{0}$, then $u_i = \mathbf{0}$ for all i.

 If $\mathbf{u} = \mathbf{0}$, then $\mathbf{u} \cdot \mathbf{u} = \mathbf{0} \cdot \mathbf{0} = u_1^2 + u_2^2 + \dots + u_n^2 = 0^2 + 0^2 + \dots + 0^2 = 0$.
- Part 3: We need to show if $\mathbf{u} \cdot \mathbf{u} = 0$, then $\mathbf{u} = 0$. We begin by noting that for any real number x, if $x^2 = 0$ then x = 0. If $\mathbf{u} \cdot \mathbf{u} = u_1u_1 + u_2u_2 + \cdots + u_nu_n = u_1^2 + u_2^2 + \cdots + u_n^2 = 0$ then $u_i^2 = 0$ for all i which implies $u_i = 0$ because the u_i are real numbers. Therefore, since $u_i = 0$ for all i, by definition $\mathbf{u} = 0$.
- 49. We need to show $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} \mathbf{v}\| = \|\mathbf{v} \mathbf{u}\| = d(\mathbf{v}, \mathbf{u})$. If we let c = -1 in Theorem 1.3(b), then $\|-\mathbf{w}\| = \|\mathbf{w}\|$. We use this key fact below.

PROOF:
$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|$$
 By definition $\|\mathbf{u} - \mathbf{v}\| = \|\mathbf{v} - \mathbf{u}\| = \|\mathbf{v} - \mathbf{u}\| = \|\mathbf{v}\|$ By $\|\mathbf{u} - \mathbf{v}\| = \|\mathbf{w}\|$ (key fact) By definition

50. We need to show $d(u, w) \le d(u, v) + d(v, w)$. That is, $\|u - w\| \le \|u - v\| + \|v - w\|$. This follows immediately from Theorem 1.5:

$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$$
 with $\mathbf{x} = \mathbf{u} - \mathbf{v}$ and $\mathbf{y} = \mathbf{v} - \mathbf{w}$.

- 51. We need to show $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} \mathbf{v}\| = 0$ if and only if $\mathbf{u} = \mathbf{v}$.

 This follows immediately from Theorem 1.3(a): $\|\mathbf{w}\| = 0$ if and only if $\mathbf{w} = \mathbf{0}$, with $\mathbf{w} = \mathbf{u} \mathbf{v}$.
- We will show $\mathbf{u} \cdot c\mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})$ by applying the definitions. $\mathbf{u} \cdot c\mathbf{v} = [u_1, u_2, \dots, u_n] \cdot [cv_1, cv_2, \dots, cv_n] = u_1cv_1 + u_2cv_2 + \dots + u_ncv_n \\ = cu_1v_1 + cu_2v_2 + \dots + cu_nv_n = c(u_1v_1 + u_2v_2 + \dots + u_nv_n) = c(\mathbf{u} \cdot \mathbf{v})$
- 53. We need to show $\|\mathbf{u} \mathbf{v}\| \ge \|\mathbf{u}\| \|\mathbf{v}\|$. That is, $\|\mathbf{u}\| \le \|\mathbf{u} \mathbf{v}\| + \|\mathbf{v}\|$. This follows immediately from Theorem 1.5, $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$, with $\mathbf{x} = \mathbf{u} \mathbf{v}$ and $\mathbf{y} = \mathbf{v}$.