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Length and Angle: The Dot Product :
L
1.2 Length and Angle: The Dot Product

T 1. FollowingExamplel.S,u-v='[—1]-[3}—( -1)-3+4+2- 1=-3+2=-1

2171
) o AR . kact
2. Following Example 1.8, u-v =1 _o 1| ¢ -3-4_+(—2)-6—12-—12=0. [
T1] T2 | —
s uv=12|3]=1-2+2-3+3-1=2+6+3=1L . i
13 1] C
3.2 15 : —
4.ouv= | —086]- =(3.2)- (15)+( —0.6) - (41)+( —14)-(— 02)—262.
~1.4 | —02
‘, ’ F 1 4
.@u-v-—; ﬁ - “/g 144 (VD) (—V2) +V3-0+0-(-5)=4-2=2. :
‘ T 1227 [—2.29
—3.25 1.72 | : - , -
6. uv=| oor || 433 = -1.12.9.20+1.72-4.33 + 1.83 - 1.54 = 3.6265. :
| —1.83 | | ~1.54 | l

7. In the remarks prior to Example 1.11, we note that finding a unit vector v ‘
in the same direction as a given vector u is called normalizing the vector u.

Therefore, we proceed as in Example 1.12:

Hun = (—1)2 +92 = +/3, 50 a unit vector v in the same direction as u is \
e |

‘8. Following Example 1.12, we have: ) \ _

full = /3% + (—2)® = /13, s0 a unit vector v in the same direction as u is !

v=/luu= ) | 5| = L%\/@ﬂ

9. Following Example 1.12, we have: ‘
lul| = vVIZ+22+32 = /14, s0 a unit vector v in the same d1rect1on as u is
1/v/14 }

1
v =(1/ [ul)u=(1/v1) {‘2} = [Z/x/ﬁ
3 3//14




I Vectors

10. Following Example 1.12, we have:

laj] = \/(3.2)2 +(—0.6)% + (~1.4)% = V12.56, 50 unit vector v in the same direction as u

3.2 3.2/v/12.56 10,2548
Isv={(1/]ul)u = (1/v/1255) [-o.a] = [—o.e/mﬁéJ ~ [—0.0478}.
‘ =14 ~14/v12.56 0.1115
11 lujl = \/12 \/—) + (\/—) +0% = /6, 50 a unit vector in the direction of u is
1 1/v8 1/v8 VE/6

V=W ulyu = (1/v8) | 2] ﬁ?ﬁ = iﬁ/rg = ﬁg
A 2

0 0/v6
2 2 2 . b . .
12, Jlufl = 4/{1.12)%* + (=8.25)% +(2.07)% + (—1.83)° = v/19.4507, so the unit vector v is
- 1121 T 1.12/vi94507 0.2540
3 _ =325 | _ | ~3.25/v19.4507 | | —0.7369
v=(1/ ”uu)uf (1/+/19.4507) 207 | = 2.07/vi5.0507 | ® | o.dess

~1.83 ~1.83/+/19.4507 ~0.4149

13. Following Example 1.13, we compute: u — v = { “;J — [i’} = [ —4J, 50
d(w,v) = jju — V”—»— (-4)* +12 = V17,
3 4 -1
14. Following Example 1. 13, we compute n—-v= -~ = , 86

dlw,v) = flu vl = - /(-1)® + (<8)? = /5.

, 1 2 -1
15. Following Example 1.13, we compute: u~ v = [2J —-[SJ = [—1 J, 80
d(u, v) = lu~ v)| = ~4/(=1)? 12226

‘ 3.2
16. Following Example 1.13, we compute: u — v = [——O.GJ -~

d(u,v) = lu—v| = '—\/(?/)2 F(—47)% + (~1.9)? = 26.l42 ~ 5.14.
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@As in Example 1.14, we begin by caleulating u- Vv (because if u-v =

dove21+(=]) (1 (- =2+2-4= 3,
lufl = /2% + (1) +12= /B, and [lv]| = 4/12 + (-2)° + (-1 = /5.

u-v 3 1 A T )
= - = = — - —_ — d 600.
Therefore, cos 8 —————“uH T 5 s0 @ = cos ( 2) 3 radians or

Voo

begin by ca.lculating u-v:
—1=D=>cos€=0=>6isright.

ntinue following Example 1.15:

0 we're done

06. As in Example 1.14, we
gov=4-143- (-1 (1) 1=4-3
1f we wished to be more explicit, we could co

— u‘__;v_.__—_--__._—-—0 : = -1 =£1‘ i r 90°.
cosd = ol Tl 7 0, s0 § = cos™H {0) 5 adians o 90

97. Following Example 1.14, we calculate:
u-v=(09)(—45) + (2.1) - (2.6) + (1.2) - (—0.8) = 0.45,

= /(09 + (2" + (1.2)? = v/6.66, and

: vl = 4/ (~45)° + (2.6)° + (~0.8)% = /2T.65.

Therefore, cosd = v o __.—Ojfi—-— = __.0_4_5._—
’ = Tolllvi ~ V/6.66+/27.65 182817

0.45 ) = 1.5375 radians or 28.09°.

50 § = cos™* (————-—
4/182.817

Note: To minimize error, we do not approximate until the last step.

0.
45 ~ 0.0332816 is a positive number close to 2810,

Since
\ e AR5 817

we should expect 8 to be close t0

but less than 90°. Why?

28. Following Example 1.14, we calculate:

gevel-(-3)+(=2) 143 (=1)+3-4= —4,

fuf = /12 +(-2)" + 82 + 42 = /30, and

vl = /(=32 + 12+ (1P + 12 = J12.
u-v —4 2

—————

Therefore, cosd = —n—u-m = _\7_?:6—\7-1_5 =3 70

. 2 e
50 § = cos™! (———-—) =2 1.7832 radians or 102.17°.
- 3v/10 E

we do not approxirriate until the last step.

Note: To minimize error,

~ —0.2108185 is a negative number close to Zero,

S:c—
ince 3070

we should expect 8 to be close to but greater than 90°. Why?

Vectors
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Length and Angle: The Dot Product

(ﬁ (a) u-v is a real number, so [u-v|| is the norm of a number, which is not defined.
~  (b) u-vis a scalar, while w is a vector.

Thus, u: v+ w adds a scalar to a vector, which is not a d

(c) uis a vector, while v - w is a scalar.

Thus, u

«{v-w) is the dot product of a vector and a scalar, which is not defined.

efined operation.

(d) ¢« {u+v) is the dot product of a scalar and a vectlor, which is not defined.

18. From trigonometry, we have:

cosf >0=>0is acute, cosf < 0 = 8 is obtuse, and cosf = 0 = 4 is right.

From cosd =

U-v

i |

. Therefore, as in Example 1.14, we calculate:
Wv=3:-(-1)+0-1=-3<0=>cos0 <0 @ is obtuse.

119, XFrom trigonometry, we have:

20.
21.

22.
23.

24.

—wl-, we see u - v determines the sign of cos 8, Why?

cosf >0 = 0 is acute, cosf < 0 = 9 is obtuse; and cosf =0 = ¢ is right.

From cos 8 =

u-v

ul|

Therefore, as in Example 1.14, we calculate:
u-v=2-1+(-—1)v(—-2)+1-(—1)=4>0_=>c038>0=>6'is acute.

Following the first step in Exam_plé 1.14, we calculate:

u-v=4-143.(

Following the first step in Example 1.14, we caleulate:
u-v=(0.9)(-4.5) 4 (2.1) - (28) +(1.2) - (—0.8) = 0,45 = cos6 > 0 = 6 is acute.

u-vl=1-(—3)+(—2)‘-1+3-(—1)+3-4:—4=>cos€ < 0= 0 is obtuse.

W’ we see u ‘v determines the sign of cos 4. Why?

_1)+.(—1)-1':4—3—1=0=>c059=0=>é?isright.

Since u - v is obviously > 0, we have cos@ > 0 which implies 4 is acute.
Note: u- v is > 0 because the components of both u and v are positive.

As in Example 1.14, we begin by calculating u-v (if u-v =

So, cosf = ——=" Y _ _ =2
Iail vl 342

V2

2.

and 6 = cos™! (—

v2

2

)

0, we're done. Why?):
uv=3:(-1)+0-1=-3, |u| = v310Z=§ =3, vl =+/(-1)% +12 = /3,

3

4

radians or 135°,
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42,

43.
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1 Vectors

Two vectors u and v are orthogonal if and only if [©] their dot product is zero.
That is u-v =0. So, we set u-v = 0 and solve for k: ‘

u-v-_—[g}-[;:ji]=0=>2{k+1)+3(k—1)=0¥>5k—1=U='>k=:,1;.

Substituting % back into the expression for v we get: v = [

We check our answer by computing u - v (it should be zero):

CARI

=55 = 0 as feguired.
Two vectors u and v are orthogonal if and only if [©] their dot product is zero.
That is u-v =0. So, we set u-v = 0 and solve for k-

il cAlh

1 k2 '
u-v= | -17.| k& =0=>k2—k——6=(k+2)(k—3)=0=>k=—2,3.
2 -3
Substituting & back into the expression for v we get:
| (—2)° 4 32 9
When k= ~2,vi=| —2 =|-=2{. When k=3, vo = 3 | = 3
1 -8 -3 -3 -3
We check by computing u-v; and u - v (they should both be zero):
1 4 1 9 ‘
u-vy=|-1¢.|-2|=442-6=0andu-ve=|-1]. 3/ =9-3-6=0.
2 -3 2 —3

Two vectors u and v are orthogonal if and only if [©] their dot product is zero.
That is u-v = 0. So, we set u-v =0 and solve for y in terms of z:

u-v= [ﬂ[ﬂ =0=3z+y=0=y= -3z

Substituting y = —3z back into the expressior for v we get: v = [ —32} =z [ _;’ }

Conclusion: Any vector orthogonal to [ ? } must be a multiple of { _é ]

Check: u-v = [?] . [_33;] = 3z — 3z = 0 for all values of z.

-1 -1
Note: We could also have solved for z in terms of y yielding v = [ 3¥ J =y [ 8 } .
Y 1
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a‘ prove Theorem 1.2(b) by applying the definition of the dot product.
u- (V+W) = ul(v1+w1)+uz(v2+w2)+---+un(vn+wn)
=y U Wy + Ul + UpWe + - F UnUn + Unln

= (uw1+uzvz+---+unwn)+(u1w1+uzw2+--v+unwn)
=u-v+u-w. ' ‘

48. We prove the three parts of Theorem 1.2(d)
by applying the definition of the dot product and key properties of real numbers.

Part 1: For any vecior u, we need to show u-u = 0.
We begin by noting that for any real number x, we have z? > 0.
So, 1.1-u='u,l'u:1-l-fur,21;'.g+----i-unfu,n=u§+u§+----{-uf1 = 0.
Note: u? +ul + - - +u2 > 0 because the u; are real numbers.
Part 2: We need to show if u=0, then u-u = 0.
We begin by noting that if u = 0, then u; = 0 for alt 4.
Ifu=0, thenu-u=0-0=u%+u§+---+u%=02+02+---—1—02=0.
Part 8: We need to show if u-u =0, thewu =0. :
We begin by noting that for any real number z, if 2% = 0 then z = 0.
Ifu-u:ulul—}-uzug—i—----l—unuﬂ:u%+u%+---+un=
then u? = 0 for all 4 which implies u; = 0 because the u; are real numbers.
Therefore, since u; = 0 for all ¢, by definition u = 0.

49. We need to show d (0,v) = u—vil=[v-ul = d(v,u).
If we let ¢ = —1 in Theorem 1.3(b), then || — wi| = ||w{l. We use this key fact below.

PROOF: d(u,v)=|u—v| By definition
== (v—u) Bythefactthat(w—y):—(y—z) '
= [jv —ul| By || — w| = |wl|| (key fact)
=d(v,u}. By definition

50. We need to show d{u, w) < d (u,v) +d (v, w). That is, jlu— wil < Jju— vl + {Iv - wil.
This follows immediately from Theorem 1.5:

lx+yl < x|+ ]yl withx=u-vandy=v—W.

51. We need to show d (u,v) = |ju—v]| =0 if and only fu=v.
This follows immediately from Theorem 1.3(a): ||w|j = 0 if and only ifw =0, withw =u—v.

52.1We will show u- cv = c¢(u - v) by applying the definitions.

Weev = (UL, U, ... Unl [cvr, cuz, - . -, CUR| = UrCUL + U2CV2 G UnClUn
= CuyUL + CUals & -+ Clnln = c(uavy + UgV2 + o0 F Untn) = c(u - v}

53. We need to show |u — vl = [juj| — [[v]l. That is, flu] < [fu —v| + v
This follows immediately from Theorem 1.5, |lx+y[i < lIx]|+ lyll, with x=u—-vandy =V



