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4.1 Introduction to Eigenvalues and Eigenvectors
1. If Ax = Ax, then x is an eigenvector of A corresponding to .

30 1 3 1

we see Vv is an eigenvector of A corresponding to (the eigenvalue) 3.

So, as in Example 4.1, since Av = [0 BJ [IJ = [3J :3[1J = 3v,

2. If Ax = )x, then x is an eigenvector of A correspondihg to A.

. ' . 12 3 -3 3
S0, as in Example 4.1, since Av = [2 IJ [_3} f{ 3} _—1{_3} = —lv,

we see Vv is an eigenvector of A corresponding to (the eigenvalue) —1.

3.,WecomputeAv=[~1IH 1]2[4]:_3[_1}:_%,

6 0| -2 6 2
we see v is an eigenvector of A corresponding to (the eigenvalue) —3.
: [4 274 12 4
4. We compute Av = 5 -7||2]7| 6|= 3 9| = 3v,
so v is an eigenvector of A corresponding to the eigenvalue 3.
| 30 01 21 [ 6 2
5. We compute Av= |01 -2 =l =]-3|=3]-1] =3y,
(10 ]| 1] L 3] 1
SO v is an eigenvector of A corresponding to the eigenvalue 3.
(01 -17[ 27 TJo
6. We compute Av= |11 1 -1 =10]|=0v,
112 0] | -1 | 0

S0 Vv is an eigenvector of A corresponding to the eigenvalue 0.
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9. As in Example 4.2, we show hull(A — I) # 0 then compute null(A — I) to find x.

Since Ax = x implies (A — I)x'= 0, we have:

ie| el as] =[5 1]

Since the columns of A — I are clearly linearly dependent (because az = —4a;),
the Fundamental Theorem of Invertible Matrices implies that null(A — 1) # 0.
That is Ax = x has a nontrivial solution, so 1 is an eigenvalue of A.

Since Ax = x implies (A — I)x = 0, we now compute null(4 — I).

INEHHEENY

So, if x = xl 1s an eigenvector corresponding to the eigenvalue 1, then z; = 4z,.
2 .

4{(:2
T2
Q: What does this tell us about null(A — I)? What about E;?

A: The above shows null(4 — I) = span ({ ;1 }) = Fy, the etgenspace of 1,

These eigenvectors are of the form x = [ ] . That is nonzero multiples of x = [ 111 }

10. As in Example 4.2, we show'null(A — 4I) # 0 then compute null(A — 47) to find x.

Since Ax = 4x implies (A — 4I)x = 0, we have:
04 4 0 1 -1
A-dl= [—1 5} - [0 4} - [o o]
Since the columns of 4 — 47 are clearly linearly dependent (because ay = —ay),

the Fundamental Theorem of Invertible Matrices implies that null(A — 4I) # 0.
That is Ax = 4x has a nontrivial solution, so 4 is an eigenvalue of A.

Since Ax = 4x implies (A — 4I)x = 0, we now compute null(4 — 4I).

A-4aT]0) = [(1) " l 8]

So, if x = [ xl ] 1s an eigenvector corresponding to the eigenvalue 4, then zo = z;.
2 >

L1

L1

Q: What does this tell us about null(4 — 41)? What about E,?
A: The above shows null(A — 4I) = span ([ 1

These eigenvectors are of the form x = [ } That is nonzero multiples of x = [ i ] .

1 ]) = By, the eigenspace of 4.




11. As in Example 4.2, we show null(4 + J ) # 0 then compute null(4 + T ) to find x.

Since Ax = —1x implies (4 + I )x = 0, we have:

10 2 100 20 2
A+I=|-111|4+]010|=|-10971
20 1 001 20 2

Since the columns of A + I are clearly linearly dependent (because ag = a; + ay),
the Fundamental Theorem of Invertible Matrices implies that null(A +7I) # 0.

That is Ax = —1x has a nontrivial solution, so —1 is an eigenvalue of A.
Since Ax = —1x implies (A4 + I)x = 0, we now compute null(4 4 ).
20210 101
[A+T|0j=|-121(0|-—]011
20210 (000
Tq :
Ifx= |29 | isan eigenvector corresponding to the eigenvalue —1, thenz; = 29 = —z5.
zs3
— T3 -1
These eigenvectors are of the form x — —Z3 |, nonzero multiples of x = | —1
T3 1
- Q: What does this tell us about null(A +I)? What about E_?
-1
A: The above shows null(A + I ) = span -1 = E_, the eigenspace of —1.
1

12. As in Example 4.2, we show null(4 — 2I) # 0 then compute null(A — 2I) to find x.

Since Ax = 2x implies (A — 21)x = 0, we have:

31 -1 2001 [1 1 -1 |
A-2I=111 1|~-[020]|={1-1 1
4 2.0 002 4 2 -2
Since the columns of A — 27 are clearly linearly dependent (because ag = —ay),

the Fundamental Theorem of Invertible Matrices implies that null(4 — 27) # 0.
That is Ax = 2x has a nontrivial solution, so 2 is an eigenvalue of A.

Since Ax = 2x implies (A — 2] )X = 0, we now compute null(A4 — 2I).

1 1 -170 10 0
[A-2I|0]=|1-1 10| — 01 -1
4 2 -20 00 0
. _ .
Ifx= Z2 | is an eigenvector corresponding to the eigenvalue 2, then z; =0, 23 = 5.
z3
. 0 0
These eigenvectors are of the form x — Z2 |, nonzero multiples of x = | 1

Z3 . 1




15. From the remarks prior to Example 4.4, we have the following key insight:
x is an eigenvector of A if and only if A transforms x to a parallel vector.
Why? Because then Ax and x are multiples of each other. That is, Ax = A\x.
Recall that Ey = null(A — AI) = {eigenvectors of A} U {the zero vector, 0}.
We have to add the zero vector because eigenvectors are nonzero by definition.

Since Ax = [ (1) g } { :; } = [ g ] , A is the matrix of projection P onto the z-axis.
Consider vectors v parallel to the z-axis, parallel to the y-axis, and not parallel to either axis.

z-axis: If v is parallel to the z-axis, P transforms v to itself. That is, P(v ) =V.
So, all nonzero vectors parallel to the z-axis are eigenvectors of A corresponding to 1.

y-axis: If v is parallel to the y-axis, P transforms v to 0. That is, P(v)=0.
So, all nonzero vectors parallel to the y-axis are eigenvectors of A corresponding to 0.

neither: If v is not parallel to either axis, P transforms v to a nonparallel vector.
So, all nonzero vectors not parallel to either axis are not eigenvectors of A.

So E; = span(z-axis) = span ([ (1) D and Ey = span(y-axis) = span ([ ? D

Q: Given that the z-axis is a line, how might we generalize this result?
A: Hint: Consider vectors parallel, perpendicular and neither to the given line.

16. From the remarks prior to Example 4.4, we have the following key insight:
x is an eigenvector of A if and only if A transforms x to a parallel vector.
Why? Because.then Ax and x are multiples of each other. That is, Ax = Ax.
Recall that Ey = null(A — AI) = {eigenvectors of A} U {the zero vector, 0}.
We have to add the zero vector because eigenvectors are nonzero by definition.

2
From Example 3.59 in Section 3.6, we have: Pp(x) = Ef-lﬁig [ ddcli dzlczig ]
e 142 2

16 12 T 162 + 12y 4 4
_1 — L — 4 3
since x5 [ 13 15 | | 3] =% [1oe oy | = 4[]+ [ 5]

A is the matrix of projection P, onto line ¢ with direction vector d = { ;L} :

Consider vectors v parallel to £, perpendicular to £, and neither to direction vector d.

pamllel If v is parallel to £, P, transforms v to itself. That is, Pp(v) = v.
So, all nonzero vectors parallel to £ are eigenvectors of A corresponding to 1.

serpendicular: 1f v is perpendicular to £, P, transforms v to 0. That is, Py(v) = 0.
So, all nonzero vectors perpendicular to £ are eigenvectors of A corresponding to 0.

neither: If v is neither parallel nor perpendicular, P, transforms v to a nonparallel vector.
So, all vectors not parallel or perpendicular to £ are not eigenvectors of A.

E; = span(parallel to d) = span (li g ])

Ey = span(perpendicular to d) = span <[ _Z ])
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17. From the remarks prior to Example 4.4, we have the following key insight:
x is an eigenvector of A if and only if A transforms x to a parallel vector.
Why? Because then Ax and x are multiples of each other. That is, Ax = \x.
Recall that E) = null(A — A\I) = {eigenvectors of A} U {the zero vector, 0}.
We have to add the zero vector because eigenvectors are nonzero by definition.

Since Ax = 200z = 2z , A is the matrix of stretching S.
- 03 Y 3y .

Consider vectors v parallel to the z-axis, parallel to the y-axis, and not parallel to either axis.

z-axis: If v is parallel to the z-axis, S transforms v to twice itself. That is, S(v) = 2v.
So, all nonzero vectors parallel to the z-axis are eigenvectors of A corresponding to 2.

y-axis: If v is parallel to the y-axis, S transforms v to thrice itself. That is, S(v) = 3v.
So, all nonzero vectors parallel to the y-axis are eigenvectors of A corresponding to 3.

neither: If v is not parallel to either axis, S transforms v to a nonparallel vector.
So, all vectors not parallel to either axis are not eigenvectors of A.

So E; = span(z-axis) = span ([ (1) }) and E3 = span(y-axis) = span ({ (1) J)

Q: Fo'llowing this exact same process, how might we generalize this result?

A: TfA= { g 2] , then E, = span(z-axis) and E; = span(y-axis).

18. From the remarks prior to Example 4.4, we have the following key insight:
x is an eigenvector of A if and only if A transforms x to a parallel vector.
Why? Because then Ax and x are multiples of each other. That is, Ax = Ax.
Recall that E) = null(A — AI) = {eigenvectors of A} U {the zero vector, 0}.
We have to add the zero vector because eigenvectors are nonzero by definition.
cosf —sinf }

| From Example 3.58 in Section 3.6, we have: Ry = [ sinf  cosf

Ax = {:ﬁz —sgslg} [2} = [(1) —(1)} {z] = [_g}, so A is the matrix of rotation Rggo.

Consider the zero vector 0 and all nonzero vectors v.

v =0; Since a rotation leaves the zero vector fixed, Rgge(0) = 0.
However, the zero vector is not an eigenvector of A corresponding to 0.
Why not? Because the zero vector is zero and eigenvectors must be nonzero by definition.

v # 0: A rotation transforms any nonzero vector to a nonparallel vector.
So, all nonzero vectors are not eigenvectors of A when A is the matrix of any rotation.
. Q: Is it still true that Ey = span(0) = 07
A: Yes, because Ey = {eigenvectors of A\} U {the zero vector, 0} = {0}.
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21. From the remarks prior to Example 4.4, we have the following key insight:
X is an eigenvector of A if and only if 4 transforms x to a parallel vector.
So, lines that do not bend at the unit circle represent eigenvectors.
The extension beyond the circle tells us if the vector has been stretched.

Since the lines do not bend on the line £ y = —z with direction vector d = [ i ] ,

So, we consider vectors v parallel to d, perpéndicular to d, and neither.

parallel: On the line y = z, the lines do not bend and extend precisely 2 units beyond it. So:
If v is parallel to the d, S transforms v to thrice itself. That is, S(v) = 2v.
So, all nonzero vectors parallel to d are eigenvectors of A corresponding to 2.

perp: On the line y. = —ux, the lines extend precisely 0 units beyond the unit circle. So:
If v is perpendicular to the d, S transforms v to 0. That is, S(v) = Ov.
So, all nonzero vectors perpendicular to d are eigenvectors of A corresponding to 0.

neither: Off the lines y = x and y = —x, the lines do bend at the unit circle. So:
If v is not parallel or perpendicular to d, S transforms v to-a nonparallel vector.
So, all vectors not parallel or perpendicular to d are not eigenvectors of A.

So Es :span(d)zspan({i]) and Eo :span([__”).

22. From the remarks prior to Example 4.4, we have the following key insight:

i : X is an eigenvector of A if and only if A transforms x to a parallel vector.

So, lines that do not bend at the unit circle represent eigenvectors.

Here, however, all lines bend at the unit circle, so we conclude there are no eigenvectors.

Q: What types of transformations have no eigenvectors?
A: Rotations. See Exercise 18. Is the graph in Exercise 22 suggestive of a rotation?

)



35. (a) To find the eigenvalues of A = { (Z Z], we solve det (A — A) =0 &

d— X

(b) Using the quadratic formula, the solutions to the equation in part (a) are

det{a;A : ]=A2,—(a+d)x+(ad—bc)=>\2~tr(A)/\+detA=0-

(a+d)i\/(a+d)2—~4(@d—b6) B a+d+aT T a7 Jad— dad + dbc
2 o 2

_ %<a+di\/(a—d)2+4bc>.

(©) Let M = L(a+d) + /(@ — A2 + 4bc)) and Ae = 3(a +d) — /(e — O + 4b0)).
So,)\1+)\2:—§—(a+d)—l—' (a—l—d)_a+d—tr( ).
Also, Mg = Y{(a+d)? — ((a— d)? + 4bc)] = [4ad — dbe] = ad — be = det A.

36. (a) If A is to have two distinct real eigenvalues, the discriminant of the equatlon in
Exercise 35(b) must be positive. That is, (a — d)? +4bc >0 (a— d)? > —4be.
If a = d, then neither b nor ¢ can equal zero if this inequality is to hold.
If a # d, whenever b and c have the same sign this inequality holds.

(b) If A is to have one real eigenvalue, the discriminant must be zero.
That is, (a — d)® + 4bc = 0 & (a — d)® = —4bc.
If @ = d, then neither b or ¢ must be zero if this inequality is to hold.
(c) If A is to have no real eigenvalue, the discriminant must be negative.
That is, (a — d)° + 4bc < 0 & (a —d)? < —dbe.
If @ = d, then neither b nor c can equal zero if this inequality is to hold.
If a # d, then b and ¢ must have opposite signs if this inequality is to hold.
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37. As in Example 4.5, we find all solutions \ of the equation det(A — AI) = 0.

b
d— A

Since A — (@ + d)A + ad = (A — a)(\ — d) = 0, the solutions are ) = a,d.

SR I E R R

0 a-—d 0 a—d
Ifx= [ il is an eigenvector corresponding to a, zi =t, z9 = 0.
: 2

det(A—~)\I)=det[a5>‘ JZAz—(a-i-d))\—Fad

These eigenvectors are of the form X = g J , nonzero multiples of { (1) ]
So, E, = null(A — al) = span ([ (1) J)

A:d'A—dI:[a—d b }:[a——d b]

a—d b
0 d—d 0 0 “”[ 0 o}

Ifx= { il } is an eigenvector corresponding to d, (d — a)z; = bxy = (d — a)bt.
2
. : ' bt . b
These eigenvectors are of the form x = [ (d - a)t ] , honzero multlples of { d—a J .

So, Ep = null(A4 — bI) :span([dEaJ).

38. As in Example 4.5, we find all solutions ) of the equation det(4 — AI) = 0.
a—XA b

det(A~)\I)=detl. N

]:/\2—~2a>\+a2+b2

Since A% — 2a) + a2 + b2 = 0 implies A = 225 4a22—4(a2+b2) , we have A = a + bi,a — bi.

a+bi: A*(a+bi)1={q~(fb+bi) a—(f—k’bz’)} = [__”2 ~b3] — [% é]

Ifx= [ il } is ‘an eigenvector corresponding to a, zo = ix1.
2
These eigenvectors are of the form x = it |» nonzero multiples of [ t } .

S0, Baqpi = null(A — (a + bi)I) = span ([ 1@ })

. N7 | a—(a—bi) b b b 11
a——bz.A——(a—bz)I—_[ p a—(a{—~bi):|h[~b bi}"—*[0,0}
If x = { zl J is an eigenvector corresponding to a, o = —iz;.

2

These eigenvectors are of the form x = ——iz , honzero multiples of [ mﬁ ]

80, Fa_s: = null(4 — (a — bi)I) = span ([_12 D .



