4.1 Introduction to Eigenvalues and Eigenvectors

- 1. If $A\mathbf{x} = \lambda \mathbf{x}$, then \mathbf{x} is an eigenvector of A corresponding to λ . So, as in Example 4.1, since $A\mathbf{v} = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 3\mathbf{v}$, we see \mathbf{v} is an eigenvector of A corresponding to (the eigenvalue) 3.
- 2. If $A\mathbf{x} = \lambda \mathbf{x}$, then \mathbf{x} is an eigenvector of A corresponding to λ . So, as in Example 4.1, since $A\mathbf{v} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -3 \end{bmatrix} = \begin{bmatrix} -3 \\ 3 \end{bmatrix} = -1 \begin{bmatrix} 3 \\ -3 \end{bmatrix} = -1\mathbf{v}$, we see \mathbf{v} is an eigenvector of A corresponding to (the eigenvalue) -1.
- 3. We compute $A\mathbf{v} = \begin{bmatrix} -1 & 1 \\ 6 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} -3 \\ 6 \end{bmatrix} = -3 \begin{bmatrix} 1 \\ -2 \end{bmatrix} = -3\mathbf{v}$, we see \mathbf{v} is an eigenvector of A corresponding to (the eigenvalue) -3.
- 4. We compute $A\mathbf{v} = \begin{bmatrix} 4 & -2 \\ 5 & -7 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 12 \\ 6 \end{bmatrix} = 3 \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 3\mathbf{v}$, so \mathbf{v} is an eigenvector of A corresponding to the eigenvalue 3.
- 5. We compute $A\mathbf{v} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & -2 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ -3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} = 3\mathbf{v}$, so \mathbf{v} is an eigenvector of A corresponding to the eigenvalue 3.
- **6.** We compute $A\mathbf{v} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 0\mathbf{v},$

so ${\bf v}$ is an eigenvector of A corresponding to the eigenvalue 0.

9. As in Example 4.2, we show $\operatorname{null}(A-I)\neq 0$ then compute $\operatorname{null}(A-I)$ to find x.

Since $A\mathbf{x} = \mathbf{x}$ implies $(A - I)\mathbf{x} = \mathbf{0}$, we have:

$$A - I = \begin{bmatrix} 0 & 4 \\ -1 & 5 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ -1 & 4 \end{bmatrix}$$

Since the columns of A - I are clearly linearly dependent (because $\mathbf{a}_2 = -4\mathbf{a}_1$), the Fundamental Theorem of Invertible Matrices implies that $\text{null}(A - I) \neq \mathbf{0}$. That is $A\mathbf{x} = \mathbf{x}$ has a nontrivial solution, so 1 is an eigenvalue of A.

Since $A\mathbf{x} = \mathbf{x}$ implies $(A - I)\mathbf{x} = \mathbf{0}$, we now compute null(A - I).

$$[A - I \mid \mathbf{0}] = \begin{bmatrix} -1 & 4 & 0 \\ -1 & 4 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} -1 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So, if $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is an eigenvector corresponding to the eigenvalue 1, then $x_1 = 4x_2$.

These eigenvectors are of the form $\mathbf{x} = \begin{bmatrix} 4x_2 \\ x_2 \end{bmatrix}$. That is nonzero multiples of $\mathbf{x} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$

Q: What does this tell us about $\operatorname{null}(A-I)$? What about E_1 ?

A: The above shows $\operatorname{null}(A-I) = \operatorname{span}\left(\begin{bmatrix} 4\\1 \end{bmatrix}\right) = E_1$, the eigenspace of 1.

10. As in Example 4.2, we show $\text{null}(A-4I) \neq 0$ then compute null(A-4I) to find x.

Since $A\mathbf{x} = 4\mathbf{x}$ implies $(A - 4I)\mathbf{x} = \mathbf{0}$, we have:

$$A - 4I = \begin{bmatrix} 0 & 4 \\ -1 & 5 \end{bmatrix} - \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

Since the columns of A-4I are clearly linearly dependent (because $\mathbf{a}_2=-\mathbf{a}_1$), the Fundamental Theorem of Invertible Matrices implies that $\mathrm{null}(A-4I)\neq \mathbf{0}$. That is $A\mathbf{x}=4\mathbf{x}$ has a nontrivial solution, so 4 is an eigenvalue of A.

Since $A\mathbf{x} = 4\mathbf{x}$ implies $(A - 4I)\mathbf{x} = \mathbf{0}$, we now compute null(A - 4I).

$$[A - 4I \mid \mathbf{0}] = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So, if $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is an eigenvector corresponding to the eigenvalue 4, then $x_2 = x_1$.

These eigenvectors are of the form $\mathbf{x} = \begin{bmatrix} x_1 \\ x_1 \end{bmatrix}$. That is nonzero multiples of $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Q: What does this tell us about null(A-4I)? What about E_4 ?

A: The above shows $\operatorname{null}(A-4I)=\operatorname{span}\left(\left[\begin{array}{c}1\\1\end{array}\right]\right)=E_4,$ the eigenspace of 4.

11. As in Example 4.2, we show $\text{null}(A+I) \neq 0$ then compute null(A+I) to find x.

Since $A\mathbf{x} = -1\mathbf{x}$ implies $(A + I)\mathbf{x} = \mathbf{0}$, we have:

$$A + I = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 1 \\ 2 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 2 \\ -1 & 2 & 1 \\ 2 & 0 & 2 \end{bmatrix}$$

Since the columns of A + I are clearly linearly dependent (because $\mathbf{a}_3 = \mathbf{a}_1 + \mathbf{a}_2$), the Fundamental Theorem of Invertible Matrices implies that $\operatorname{null}(A + I) \neq \mathbf{0}$. That is $A\mathbf{x} = -1\mathbf{x}$ has a nontrivial solution, so -1 is an eigenvalue of A.

Since $A\mathbf{x} = -1\mathbf{x}$ implies $(A + I)\mathbf{x} = \mathbf{0}$, we now compute null(A + I).

$$[A+I \mid \mathbf{0}] = \begin{bmatrix} 2 & 0 & 2 & | & 0 \\ -1 & 2 & 1 & | & 0 \\ 2 & 0 & 2 & | & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

If $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ is an eigenvector corresponding to the eigenvalue -1, then $x_1 = x_2 = -x_3$.

These eigenvectors are of the form $\mathbf{x} = \begin{bmatrix} -x_3 \\ -x_3 \\ x_3 \end{bmatrix}$, nonzero multiples of $\mathbf{x} = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$.

Q: What does this tell us about $\operatorname{null}(A+I)$? What about E_{-1} ?

A: The above shows $\operatorname{null}(A+I) = \operatorname{span}\left(\begin{bmatrix} -1\\-1\\1\end{bmatrix}\right) = E_{-1}$, the *eigenspace* of -1.

12. As in Example 4.2, we show $\text{null}(A-2I) \neq \mathbf{0}$ then compute null(A-2I) to find \mathbf{x} .

Since $A\mathbf{x} = 2\mathbf{x}$ implies $(A - 2I)\mathbf{x} = \mathbf{0}$, we have:

$$A - 2I = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \\ 4 & 2 & 0 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ 4 & 2 & -2 \end{bmatrix}$$

Since the columns of A-2I are clearly linearly dependent (because $\mathbf{a}_3=-\mathbf{a}_2$), the Fundamental Theorem of Invertible Matrices implies that $\mathrm{null}(A-2I)\neq 0$. That is $A\mathbf{x}=2\mathbf{x}$ has a nontrivial solution, so 2 is an eigenvalue of A.

Since $A\mathbf{x} = 2\mathbf{x}$ implies $(A - 2I)\mathbf{x} = \mathbf{0}$, we now compute null(A - 2I).

$$[A - 2I \mid \mathbf{0}] = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 1 & -1 & 1 & 0 \\ 4 & 2 & -2 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

If $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ is an eigenvector corresponding to the eigenvalue 2, then $x_1 = 0$, $x_3 = x_2$.

These eigenvectors are of the form $\mathbf{x} = \begin{bmatrix} 0 \\ x_2 \\ x_3 \end{bmatrix}$, nonzero multiples of $\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.

15. From the remarks prior to Example 4.4, we have the following key insight: \mathbf{x} is an eigenvector of A if and only if A transforms \mathbf{x} to a parallel vector. Why? Because then $A\mathbf{x}$ and \mathbf{x} are multiples of each other. That is, $A\mathbf{x} = \lambda \mathbf{x}$. Recall that $E_{\lambda} = \text{null}(A - \lambda I) = \{\text{eigenvectors of } \lambda\} \cup \{\text{the zero vector, } \mathbf{0}\}$. We have to add the zero vector because eigenvectors are nonzero by definition.

Since $A\mathbf{x} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$, A is the matrix of projection P onto the x-axis.

Consider vectors \mathbf{v} parallel to the x-axis, parallel to the y-axis, and not parallel to either axis.

- x-axis: If \mathbf{v} is parallel to the x-axis, P transforms \mathbf{v} to itself. That is, $P(\mathbf{v}) = \mathbf{v}$. So, all nonzero vectors parallel to the x-axis are eigenvectors of A corresponding to 1.
- y-axis: If v is parallel to the y-axis, P transforms v to 0. That is, P(v) = 0. So, all nonzero vectors parallel to the y-axis are eigenvectors of A corresponding to 0.
- neither: If v is not parallel to either axis, P transforms v to a nonparallel vector. So, all nonzero vectors not parallel to either axis are not eigenvectors of A. So $E_1 = \operatorname{span}(x\text{-axis}) = \operatorname{span}\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$ and $E_0 = \operatorname{span}(y\text{-axis}) = \operatorname{span}\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$.

Q: Given that the x-axis is a line, how might we generalize this result?

A: Hint: Consider vectors parallel, perpendicular and neither to the given line.

16. From the remarks prior to Example 4.4, we have the following key insight: \mathbf{x} is an eigenvector of A if and only if A transforms \mathbf{x} to a parallel vector. Why? Because then $A\mathbf{x}$ and \mathbf{x} are multiples of each other. That is, $A\mathbf{x} = \lambda \mathbf{x}$. Recall that $E_{\lambda} = \text{null}(A - \lambda I) = \{\text{eigenvectors of } \lambda\} \cup \{\text{the zero vector, 0}\}$. We have to add the zero vector because eigenvectors are nonzero by definition.

From Example 3.59 in Section 3.6, we have: $P_{\ell}(\mathbf{x}) = \frac{1}{d_1^2 + d_2^2} \begin{bmatrix} d_1^2 & d_1 d_2 \\ d_1 d_2 & d_2^2 \end{bmatrix}$.

Since
$$A\mathbf{x} = \frac{1}{25} \begin{bmatrix} 16 & 12 \\ 12 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{25} \begin{bmatrix} 16x + 12y \\ 12x + 9y \end{bmatrix} = \frac{4}{25}x \begin{bmatrix} 4 \\ 3 \end{bmatrix} + \frac{3}{25}y \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$
,

A is the matrix of projection P_{ℓ} onto line ℓ with direction vector $\mathbf{d} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$.

Consider vectors \mathbf{v} parallel to ℓ , perpendicular to ℓ , and neither to direction vector \mathbf{d} .

- parallel: If v is parallel to ℓ , P_{ℓ} transforms v to itself. That is, $P_{\ell}(\mathbf{v}) = \mathbf{v}$. So, all nonzero vectors parallel to ℓ are eigenvectors of A corresponding to 1.
- perpendicular: If v is perpendicular to ℓ , P_{ℓ} transforms v to 0. That is, $P_{\ell}(\mathbf{v}) = \mathbf{0}$. So, all nonzero vectors perpendicular to ℓ are eigenvectors of A corresponding to 0.
 - neither: If v is neither parallel nor perpendicular, P_{ℓ} transforms v to a nonparallel vector. So, all vectors not parallel or perpendicular to ℓ are not eigenvectors of A.

$$E_1 = \operatorname{span}(\operatorname{parallel} \ \operatorname{to} \ \operatorname{\mathbf{d}}) = \operatorname{span}\left(\begin{bmatrix} 4\\3 \end{bmatrix}\right)$$

 $E_0 = \operatorname{span}(\operatorname{perpendicular} \ \operatorname{to} \ \operatorname{\mathbf{d}}) = \operatorname{span}\left(\begin{bmatrix} 3\\-4 \end{bmatrix}\right).$

17. From the remarks prior to Example 4.4, we have the following key insight: \mathbf{x} is an eigenvector of A if and only if A transforms \mathbf{x} to a parallel vector. Why? Because then $A\mathbf{x}$ and \mathbf{x} are multiples of each other. That is, $A\mathbf{x} = \lambda \mathbf{x}$. Recall that $E_{\lambda} = \text{null}(A - \lambda I) = \{\text{eigenvectors of } \lambda\} \cup \{\text{the zero vector, } \mathbf{0}\}$. We have to add the zero vector because eigenvectors are nonzero by definition.

Since
$$A\mathbf{x} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ 3y \end{bmatrix}$$
, A is the matrix of stretching S .

Consider vectors \mathbf{v} parallel to the x-axis, parallel to the y-axis, and not parallel to either axis.

- x-axis: If v is parallel to the x-axis, S transforms v to twice itself. That is, $S(\mathbf{v}) = 2\mathbf{v}$. So, all nonzero vectors parallel to the x-axis are eigenvectors of A corresponding to 2.
- y-axis: If v is parallel to the y-axis, S transforms v to thrice itself. That is, S(v) = 3v. So, all nonzero vectors parallel to the y-axis are eigenvectors of A corresponding to 3.
- neither: If \mathbf{v} is not parallel to either axis, S transforms \mathbf{v} to a nonparallel vector. So, all vectors not parallel to either axis are not eigenvectors of A.

So
$$E_2 = \operatorname{span}(x\text{-axis}) = \operatorname{span}\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$$
 and $E_3 = \operatorname{span}(y\text{-axis}) = \operatorname{span}\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$.

Q: Following this exact same process, how might we generalize this result?

A: If
$$A = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$$
, then $E_a = \operatorname{span}(x\text{-axis})$ and $E_d = \operatorname{span}(y\text{-axis})$.

18. From the remarks prior to Example 4.4, we have the following key insight: \mathbf{x} is an eigenvector of A if and only if A transforms \mathbf{x} to a parallel vector. Why? Because then $A\mathbf{x}$ and \mathbf{x} are multiples of each other. That is, $A\mathbf{x} = \lambda \mathbf{x}$. Recall that $E_{\lambda} = \text{null}(A - \lambda I) = \{\text{eigenvectors of } \lambda\} \cup \{\text{the zero vector, } \mathbf{0}\}$. We have to add the zero vector because eigenvectors are nonzero by definition.

From Example 3.58 in Section 3.6, we have:
$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
.

$$A\mathbf{x} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix}, \text{ so } A \text{ is the matrix of rotation } R_{90^{\circ}}.$$

Consider the zero vector $\mathbf{0}$ and all nonzero vectors \mathbf{v} .

- $\mathbf{v} = \mathbf{0}$: Since a rotation leaves the zero vector fixed, $R_{90^{\circ}}(\mathbf{0}) = \mathbf{0}$. However, the zero vector is not an eigenvector of A corresponding to 0. Why not? Because the zero vector is zero and eigenvectors must be nonzero by definition.
- $\mathbf{v} \neq \mathbf{0}$: A rotation transforms any nonzero vector to a nonparallel vector. So, all nonzero vectors are not eigenvectors of A when A is the matrix of any rotation.

Q: Is it still true that $E_0 = \text{span}(0) = 0$?

A: Yes, because $E_0 = \{\text{eigenvectors of } \lambda\} \cup \{\text{the zero vector, } 0\} = \{0\}.$

21. From the remarks prior to Example 4.4, we have the following key insight: **x** is an eigenvector of A if and only if A transforms **x** to a parallel vector. So, lines that do *not* bend at the unit circle represent eigenvectors. The extension beyond the circle tells us if the vector has been stretched.

Since the lines do not bend on the line $\ell y = -x$ with direction vector $\mathbf{d} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$,

So, we consider vectors \mathbf{v} parallel to \mathbf{d} , perpendicular to \mathbf{d} , and neither.

parallel: On the line y=x, the lines do not bend and extend precisely 2 units beyond it. So: If v is parallel to the d, S transforms v to thrice itself. That is, $S(\mathbf{v})=2\mathbf{v}$. So, all nonzero vectors parallel to d are eigenvectors of A corresponding to 2.

perp: On the line y = -x, the lines extend precisely 0 units beyond the unit circle. So: If \mathbf{v} is perpendicular to the \mathbf{d} , S transforms \mathbf{v} to $\mathbf{0}$. That is, $S(\mathbf{v}) = 0\mathbf{v}$. So, all nonzero vectors perpendicular to \mathbf{d} are eigenvectors of A corresponding to 0.

neither: Off the lines y = x and y = -x, the lines do bend at the unit circle. So: If **v** is not parallel or perpendicular to **d**, S transforms **v** to a nonparallel vector. So, all vectors not parallel or perpendicular to **d** are not eigenvectors of A.

So $E_2 = \operatorname{span}(d) = \operatorname{span}\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right)$ and $E_0 = \operatorname{span}\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}\right)$.

22. From the remarks prior to Example 4.4, we have the following key insight:
x is an eigenvector of A if and only if A transforms x to a parallel vector.
So, lines that do not bend at the unit circle represent eigenvectors.
Here, however, all lines bend at the unit circle, so we conclude there are no eigenvectors.

Q: What types of transformations have no eigenvectors?

A: Rotations. See Exercise 18. Is the graph in Exercise 22 suggestive of a rotation?

- **35.** (a) To find the eigenvalues of $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, we solve $\det(A \lambda I) = 0 \Leftrightarrow \det\begin{bmatrix} a \lambda & b \\ c & d \lambda \end{bmatrix} = \lambda^2 (a + d)\lambda + (ad bc) = \lambda^2 \operatorname{tr}(A)\lambda + \det A = 0.$
 - (b) Using the quadratic formula, the solutions to the equation in part (a) are

$$\lambda = \frac{(a+d) \pm \sqrt{(a+d)^2 - 4(ad-bc)}}{2} = \frac{a+d \pm \sqrt{a^2 + d^2 + 2ad - 4ad + 4bc}}{2}$$
$$= \frac{1}{2} \left(a+d \pm \sqrt{(a-d)^2 + 4bc} \right).$$

- (c) Let $\lambda_1 = \frac{1}{2}(a+d) + \sqrt{(a-d)^2 + 4bc}$) and $\lambda_2 = \frac{1}{2}(a+d) \sqrt{(a-d)^2 + 4bc}$). So, $\lambda_1 + \lambda_2 = \frac{1}{2}(a+d) + \frac{1}{2}(a+d) = a+d = \operatorname{tr}(A)$. Also, $\lambda_1 \lambda_2 = \frac{1}{4}[(a+d)^2 - ((a-d)^2 + 4bc)] = \frac{1}{4}[4ad - 4bc] = ad - bc = \det A$.
- 36. (a) If A is to have two distinct real eigenvalues, the discriminant of the equation in Exercise 35(b) must be positive. That is, $(a-d)^2 + 4bc > 0 \Leftrightarrow (a-d)^2 > -4bc$. If a = d, then neither b nor c can equal zero if this inequality is to hold. If $a \neq d$, whenever b and c have the same sign this inequality holds.
 - (b) If A is to have one real eigenvalue, the discriminant must be zero. That is, $(a-d)^2 + 4bc = 0 \Leftrightarrow (a-d)^2 = -4bc$. If a=d, then neither b or c must be zero if this inequality is to hold.
 - (c) If A is to have no real eigenvalue, the discriminant must be negative. That is, $(a-d)^2 + 4bc < 0 \Leftrightarrow (a-d)^2 < -4bc$. If a=d, then neither b nor c can equal zero if this inequality is to hold. If $a \neq d$, then b and c must have opposite signs if this inequality is to hold.

37. As in Example 4.5, we find all solutions λ of the equation $\det(A - \lambda I) = 0$.

$$\det(A - \lambda I) = \det \begin{bmatrix} a - \lambda & b \\ 0 & d - \lambda \end{bmatrix} = \lambda^2 - (a + d)\lambda + ad$$

Since $\lambda^2 - (a+d)\lambda + ad = (\lambda - a)(\lambda - d) = 0$, the solutions are $\lambda = a, d$.

$$\lambda = a: \ A - aI = \begin{bmatrix} a - a & b \\ 0 & a - d \end{bmatrix} = \begin{bmatrix} 0 & b \\ 0 & a - d \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

If $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is an eigenvector corresponding to $a, x_1 = t, x_2 = 0$.

These eigenvectors are of the form $\mathbf{x} = \begin{bmatrix} t \\ 0 \end{bmatrix}$, nonzero multiples of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

So,
$$E_a = \text{null}(A - aI) = \text{span}\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$$
.

$$\lambda = d: \ A - dI = \begin{bmatrix} a - d & b \\ 0 & d - d \end{bmatrix} = \begin{bmatrix} a - d & b \\ 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} a - d & b \\ 0 & 0 \end{bmatrix}$$

If $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is an eigenvector corresponding to d, $(d-a)x_1 = bx_2 = (d-a)bt$.

These eigenvectors are of the form $\mathbf{x} = \begin{bmatrix} bt \\ (d-a)t \end{bmatrix}$, nonzero multiples of $\begin{bmatrix} b \\ d-a \end{bmatrix}$.

So,
$$E_b = \text{null}(A - bI) = \text{span}\left(\begin{bmatrix} b \\ d - a \end{bmatrix}\right)$$
.

38. As in Example 4.5, we find all solutions λ of the equation $\det(A - \lambda I) = 0$.

$$\det(A - \lambda I) = \det \begin{bmatrix} a - \lambda & b \\ -b & a - \lambda \end{bmatrix} = \lambda^2 - 2a\lambda + a^2 + b^2$$

Since $\lambda^2 - 2a\lambda + a^2 + b^2 = 0$ implies $\lambda = \frac{2a \pm \sqrt{4a^2 - 4(a^2 + b^2)}}{2}$, we have $\lambda = a + bi, a - bi$.

$$a+bi:\ A-(a+bi)I=\left[\begin{array}{cc}a-(a+bi)&b\\-b&a-(a+bi)\end{array}\right]=\left[\begin{array}{cc}-bi&b\\-b&-bi\end{array}\right]\longrightarrow\left[\begin{array}{cc}-i&1\\0&0\end{array}\right]$$

If $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is an eigenvector corresponding to $a, x_2 = ix_1$.

These eigenvectors are of the form $\mathbf{x} = \begin{bmatrix} t \\ it \end{bmatrix}$, nonzero multiples of $\begin{bmatrix} 1 \\ i \end{bmatrix}$.

So,
$$E_{a+bi} = \text{null}(A - (a+bi)I) = \text{span}\left(\begin{bmatrix} 1 \\ i \end{bmatrix}\right)$$
.

$$a - bi: A - (a - bi)I = \begin{bmatrix} a - (a - bi) & b \\ -b & a - (a - bi) \end{bmatrix} = \begin{bmatrix} bi & b \\ -b & bi \end{bmatrix} \longrightarrow \begin{bmatrix} i & 1 \\ 0 & 0 \end{bmatrix}$$

If $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is an eigenvector corresponding to $a, x_2 = -ix_1$.

These eigenvectors are of the form $\mathbf{x} = \begin{bmatrix} t \\ -it \end{bmatrix}$, nonzero multiples of $\begin{bmatrix} 1 \\ -i \end{bmatrix}$.

So,
$$E_{a-bi} = \text{null}(A - (a - bi)I) = \text{span}\left(\begin{bmatrix} 1 \\ -i \end{bmatrix}\right)$$
.