17. We find bases for \(\text{row}(A) \), \(\text{col}(A) \), and \(\text{null}(A) \) as in Examples 3.45, 3.47, and 3.48 respectively.

\(\text{row}(A) \): A basis for \(\text{row}(A) \) must span the rows of \(A \) and be linearly independent.
Given \(A \rightarrow R \), Theorem 3.20 asserts that the rows of \(R \) span the rows of \(A \). Why?
Because the rows of \(A \) are linear combinations of the rows of \(R \) (and vice-versa).
Finally, we simply observe that the nonzero rows of \(R \) are linearly independent.

Since \(A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix} = R \),
we conclude that \(\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \} \) is a basis for \(\text{row}(A) \).

We should also note that provided \(A \rightarrow R \) uses no row interchanges,
the corresponding rows in \(A \) are also linearly independent.

Whence, it is obvious that those rows form a basis for \(\text{row}(A) \).

\(\text{col}(A) \): A basis for \(\text{col}(A) \) must span the columns of \(A \) and be linearly independent.
When \(A \rightarrow R \), the columns with leading 1s in \(R \) are linearly independent.
As shown in Example 3.47, the corresponding columns in \(A \) are also linearly independent.

Whence, it is obvious that those columns form a basis for \(\text{col}(A) \).

Since \(A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix} = R \),
we conclude that \(\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \} \) is a basis for \(\text{col}(A) \).

\(\text{null}(A) \): Since \(Av = 0 \) implies \(v \) is in \(\text{null}(A) \), we solve \([A \mid 0] \rightarrow [R \mid 0] \) to find the conditions:

\[
\begin{bmatrix} R \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix} \Rightarrow \begin{cases} x_1 - x_3 = 0 & x_1 = 1s \\ x_2 + 2x_3 = 0 & x_2 = -2s \\ x_3 \text{ free} & x_3 = 1s \end{cases}
\]

Since \(t \) is arbitrary, \(\text{null}(A) = \text{span} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \). So, \(\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \} \) is a basis for \(\text{null}(A) \).
18. We find bases for \(\text{row}(A) \), \(\text{col}(A) \), and \(\text{null}(A) \) as in Examples 3.45, 3.47, and 3.48 respectively.

**row}(A): A basis for \(\text{row}(A) \) must span the rows of \(A \) and be linearly independent.

Given \(A \rightarrow U \), Theorem 3.20 asserts that the rows of \(U \) span the rows of \(A \). Why?

Because the rows of \(A \) are linear combinations of the rows of \(U \) (and vice-versa).

Finally, we simply observe that the nonzero rows of \(U \) are linearly independent.

\[
A = \begin{bmatrix}
1 & 1 & -3 \\
0 & 2 & 1 \\
1 & -1 & -4
\end{bmatrix}
\quad \xrightarrow{R_3-R_1+R_2} \quad
\begin{bmatrix}
1 & 1 & -3 \\
0 & 2 & 1 \\
0 & 0 & 0
\end{bmatrix}
= U,
\]

we conclude that \(\{ \begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \} \) is a basis for \(\text{row}(A) \).

Q: In \(A \rightarrow U \), why is it sufficient to reduce \(A \) only to row echelon form \(U \)?

A: As the remark following Example 3.46 explains and then demonstrates by example,
the nonzero rows of \(U \) are linearly independent. That is all that is required. Why?

We should also note that provided \(A \rightarrow U \) uses no row interchanges,
the corresponding rows in \(A \) are also linearly independent.

Whence, it is obvious that those rows form a basis for \(\text{row}(A) \).

**col}(A): A basis for \(\text{col}(A) \) must span the columns of \(A \) and be linearly independent.

When \(A \rightarrow U \), the columns with leading entries in \(U \) are linearly independent.

As in Example 3.47, the corresponding columns in \(A \) are also linearly independent.

Whence, it is obvious that those columns form a basis for \(\text{col}(A) \).

\[
A = \begin{bmatrix}
1 & 1 & -3 \\
0 & 2 & 1 \\
1 & -1 & -4
\end{bmatrix}
\quad \rightarrow \quad
\begin{bmatrix}
1 & 1 & -3 \\
0 & 2 & 1 \\
0 & 0 & 0
\end{bmatrix}
= U,
\]

we conclude that \(\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \} \) is a basis for \(\text{col}(A) \).

**null}(A): Since \(Av = 0 \) implies \(v \) is in \(\text{null}(A) \), we solve \(\begin{bmatrix} A & 0 \end{bmatrix} \rightarrow \begin{bmatrix} U' & 0 \end{bmatrix} \) to find the conditions.

We row reduce \(U \) one more step to \(U' \) make it easier to find the conditions:

\[
A = \begin{bmatrix}
1 & 1 & -3 \\
0 & 2 & 1 \\
1 & -1 & -4
\end{bmatrix}
\quad \xrightarrow{R_3-R_1+R_2} \quad
\begin{bmatrix}
1 & 1 & -3 \\
0 & 2 & 1 \\
0 & 0 & 0
\end{bmatrix}
\quad \xrightarrow{R_1+3R_2} \quad
\begin{bmatrix}
1 & 7 & 0 \\
0 & 2 & 1 \\
0 & 0 & 0
\end{bmatrix}
= U'
\]

\[
\begin{bmatrix} U' & 0 \end{bmatrix} = \begin{bmatrix}
1 & 7 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\quad \Rightarrow \quad
\begin{cases}
x_1 + 7x_2 = 0 & x_1 = -7s \\
x_2 + x_3 = 0 & x_2 = -2s
\end{cases}
\Rightarrow \quad
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
0 \\
1 \\
-2
\end{bmatrix}
\]

Since \(s \) is arbitrary, \(\text{null}(A) = \text{span} \left(\begin{bmatrix} -7 \\ 1 \\ -2 \end{bmatrix} \right) \).

So, \(\left\{ \begin{bmatrix} -7 \\ 1 \\ -2 \end{bmatrix} \right\} \) is a basis for \(\text{null}(A) \).
21. We find bases for \(\text{row}(A) \) and \(\text{col}(A) \) following Examples 3.45 and 3.47 respectively.

row(\(A\)): A basis for \(\text{col}(A) \) must span the columns of \(A \) and be linearly independent. Clearly, the linearly independent *columns* of \(A^T \) do just that.

When \(A^T \rightarrow R \), the columns with leading 1s in \(R \) are linearly independent.

As in Example 3.47, the corresponding columns in \(A^T \) are also linearly independent.

Whence, it is obvious that the *transposes* of those columns form a basis for row(\(A\)).

\[
\begin{bmatrix}
1 & 1 \\
0 & 0 \\
-1 & 1 \\
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 0 \\
\end{bmatrix} = R
\]

we conclude that \(\{ [1 \ 0 \ -1], [1 \ 1 \ 1] \} \) is a basis for row(\(A\)).

col(\(A\)): A basis for \(\text{col}(A) \) must span the columns of \(A \) and be linearly independent.

When \(A^T \rightarrow R \), the linearly independent *rows* (the nonzero rows) of \(R \) do just that.

Whence, it is obvious that the *transposes* of those rows form a basis for \(\text{col}(A) \).

\[
\begin{bmatrix}
1 & 1 \\
0 & 0 \\
-1 & 1 \\
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 0 \\
\end{bmatrix} = R
\]

we conclude that \(\{ [1 \ 0 \ -1], [0 \ 1 \ 1] \} \) is a basis for \(\text{col}(A) \).

We should also note that provided \(A^T \rightarrow R \) uses no row interchanges, the corresponding rows in \(A^T \) are also linearly independent.

Whence, it is obvious that the *transposes* of those rows form a basis for \(\text{col}(A) \).

22. We find bases for \(\text{row}(A) \) and \(\text{col}(A) \) following Examples 3.45 and 3.47 respectively.

row(\(A\)): A basis for \(\text{col}(A) \) must span the columns of \(A \) and be linearly independent. Clearly, the linearly independent *columns* of \(A^T \) do just that.

When \(A^T \rightarrow R \), the columns with leading 1s in \(R \) are linearly independent.

As in Example 3.47, the corresponding columns in \(A^T \) are also linearly independent.

Whence, it is obvious that the *transposes* of those columns form a basis for row(\(A\)).

\[
\begin{bmatrix}
1 & 0 & 1 \\
1 & 2 & -1 \\
-3 & 1 & -4 \\
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
\end{bmatrix} = R,
\]

we conclude that \(\{ [1 \ 1 \ -3], [0 \ 2 \ 1] \} \) is a basis for row(\(A\)).

col(\(A\)): A basis for \(\text{col}(A) \) must span the columns of \(A \) and be linearly independent. When \(A^T \rightarrow R \), the linearly independent *rows* (the nonzero rows) of \(R \) do just that.

Whence, it is obvious that the *transposes* of those rows form a basis for \(\text{col}(A) \).

\[
\begin{bmatrix}
1 & 0 & 1 \\
1 & 2 & -1 \\
-3 & 1 & -4 \\
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
\end{bmatrix} = R,
\]

we conclude that \(\{ [1 \ 0 \ 1], [0 \ 1 \ -1] \} \) is a basis for \(\text{col}(A) \).
24. We find bases for \(\text{row}(A) \) and \(\text{col}(A) \) following Examples 3.45 and 3.47 respectively.

row}(A): A basis for \(\text{col}(A) \) must span the columns of \(A \) and be linearly independent. Clearly, the linearly independent *columns* of \(A^T \) do just that. When \(A^T \rightarrow R \), the columns with leading 1s in \(R \) are linearly independent. As in Example 3.47, the corresponding columns in \(A^T \) are also linearly independent. Whence, it is obvious that the *transposes* of those columns form a basis for \(\text{row}(A) \).

Since \(A^T = \begin{bmatrix} 2 & -1 & 1 \\ -4 & 2 & -2 \\ 0 & 1 & 1 \\ 2 & 2 & 4 \\ 1 & 3 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = R \),

we conclude that \(\{ \begin{bmatrix} 2 \\ -4 \\ 0 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ 1 \\ 2 \\ 3 \end{bmatrix} \} \) is a basis for \(\text{row}(A) \).

\(\text{col}(A) \): A basis for \(\text{col}(A) \) must span the columns of \(A \) and be linearly independent. When \(A^T \rightarrow R \), the linearly independent *rows* (the nonzero rows) of \(R \) do just that. Whence, it is obvious that the *transposes* of those rows form a basis for \(\text{col}(A) \).

Since \(A^T = \begin{bmatrix} 2 & -1 & 1 \\ -4 & 2 & -2 \\ 0 & 1 & 1 \\ 2 & 2 & 4 \\ 1 & 3 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = R \),

we conclude that \(\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \} \) is a basis for \(\text{col}(A) \).
39. If \(\text{nullity}(A) > 0 \), then the columns of \(A \) are linearly dependent. Though we could prove this using theorems, it is instructive to prove it directly.

If \(\text{nullity}(A) > 0 \), then there exists a vector \(x \neq 0 \) such that \(Ax = 0 \).

Let \(A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \) and \(x^T = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix} \).

Since \(x \neq 0 \) at least one \(c_i \neq 0 \). Then \(Ax = \sum c_i a_i = 0 \) where at least one \(c_i \neq 0 \).

Therefore, the columns of \(A \) are linearly dependent.

So all we have to show is: If \(A \) is a \(3 \times 5 \) matrix, then \(\text{nullity}(A) > 0 \).

\[
\text{nullity}(A) = n - \text{rank}(A) = 5 - \text{rank}(A) \geq 5 - 3 = 2 > 0
\]

Q: If \(A \) is \(3 \times 5 \), why is it obvious that \(\text{rank}(A) \leq 3 \)?

A: Recall, that the number of vectors in a basis for \(\text{row}(A) = \dim(\text{row}(A)) \).

Now note the rows contain a basis for \(\text{row}(A) \), so \(\dim(\text{row}(A)) \leq \) number of rows.

So, \(\text{rank}(A) = \dim(\text{row}(A)) \leq \) the number of rows = 3.

40. If the number of rows > the number of columns, then the rows are linearly dependent.

Why? Rank must satisfy the following two conditions simultaneously:

1) \(\text{rank}(A) = \dim(\text{row}(A)) \leq \) the number of rows
2) \(\text{rank}(A) = \dim(\text{col}(A)) \leq \) the number of columns

Therefore, rank must be less than or equal to the smaller of these two numbers.

So, \(\dim(\text{row}(A)) = \text{rank}(A) \leq \) the number of columns < the number of rows.

That is, \(\dim(\text{row}(A)) = \) the number of vectors in a basis for \(\text{row}(A) \) < the number of rows.

Recall, we can find a basis for \(\text{row}(A) \) from among the rows of \(A \).

Therefore, the fact that \(\dim(\text{row}(A)) < \) the number of rows implies the following:

There exists at least one row that is a linear combination of the remaining rows.

That is, the rows of \(A \) are linearly dependent.

If \(A \) is a \(4 \times 2 \) matrix, then the rows are linearly dependent.

This is now obvious because the number of rows = \(4 > 2 = \) the number of columns.

Q: When we compare this result to Theorem 2.8 of Section 2.3, what do we notice?

Q: If the number of columns > the number of rows, are the columns are linearly dependent?

41. Rank must satisfy the following two conditions simultaneously:

1) \(\text{rank}(A) = \dim(\text{row}(A)) \leq \) the number of rows
2) \(\text{rank}(A) = \dim(\text{col}(A)) \leq \) the number of columns

Therefore, rank must be less than or equal to the smaller of these two numbers.

Since \(A \) is \(3 \times 5 \), \(\text{rank}(A) \) can equal 0, 1, 2, or 3.

Therefore, since \(n = 5 \) and \(\text{nullity}(A) = n - \text{rank}(A) \), we have:

\[
\text{nullity}(A) = 5 - 3 = 2, \quad 5 - 2 = 3, \quad 5 - 1 = 4, \quad \text{or} \quad 5 - 0 = 5
\]

42. Since \(A \) is \(4 \times 2 \), \(\text{rank}(A) \) can equal 0, 1, or 2.

Therefore, since \(n = 2 \) and \(\text{nullity}(A) = n - \text{rank}(A) \), we have:

\[
\text{nullity}(A) = 2 - 2 = 0, \quad 2 - 1 = 1, \quad \text{or} \quad 2 - 0 = 2.
\]
43. \[A = \begin{bmatrix} 1 & 2 & a \\ -2 & 4a & 2 \\ a & -2 & 1 \end{bmatrix}_{R_2 \leftrightarrow R_1} \begin{bmatrix} 1 & 2 & a \\ 0 & a + 1 & a + \frac{1}{2} \\ 0 & 0 & \frac{(a+1)(a-2)}{2} \end{bmatrix} \]

If \(a = -1 \), then \(A \rightarrow \begin{bmatrix} 1 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \text{rank}(A) = 1. \)

If \(a = 2 \), then \(A \rightarrow \begin{bmatrix} 1 & 2 & 2 \\ 0 & 3 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \text{rank}(A) = 2. \) Otherwise, \(\text{rank}(A) = 3. \)

44. \[A = \begin{bmatrix} a & 2 & -1 \\ 3 & 3 & -2 \\ -2 & -1 & a \end{bmatrix}_{R_1 \leftrightarrow R_3} \begin{bmatrix} -2 & -1 & a \\ 3 & 3 & -2 \\ a & 2 & -1 \end{bmatrix}_{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 2 & a - 2 \\ 3 & 3 & -2 \\ a & 2 & -1 \end{bmatrix} \]

\[\begin{bmatrix} 1 & 2 & a - 2 \\ 0 & 1 & a - \frac{4}{3} \\ 0 & 2 & -2a - (a-1)^2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & a - 2 \\ 0 & 1 & a - \frac{4}{3} \\ 0 & 0 & (a-1)(a-\frac{5}{3}) \end{bmatrix} \]

If \(a = 1, \frac{5}{3} \), then \(A \rightarrow \begin{bmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \text{rank}(A) = 2. \) Otherwise, \(\text{rank}(A) = 3. \)

45. As in Example 3.52, \(\{u, v, w\} \) form a basis for \(\mathbb{R}^3 \). When \(A = \begin{bmatrix} u^T \\ v^T \\ w^T \end{bmatrix} \), \(\text{rank}(A) = 3. \)

\[A = \begin{bmatrix} u^T \\ v^T \\ w^T \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}_{R_2 \leftrightarrow R_1} \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 1 \end{bmatrix}_{R_3 + R_2} \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{bmatrix} \]

Since \(\text{rank}(A) = 3 \), \(\{u, v, w\} \) form a basis for \(\mathbb{R}^3 \).

46. As in Example 3.52, \(\{u, v, w\} \) form a basis for \(\mathbb{R}^3 \). When \(A = \begin{bmatrix} u^T \\ v^T \\ w^T \end{bmatrix} \), \(\text{rank}(A) = 3. \)

\[A = \begin{bmatrix} u^T \\ v^T \\ w^T \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 5 & -3 \\ 3 & 1 & 1 \end{bmatrix}_{R_3 + R_1} \begin{bmatrix} 1 & -1 & 1 \\ -1 & 4 & -3 \\ 3 & 1 & 1 \end{bmatrix}_{R_4 \rightarrow R_3} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 4 & -2 \\ 0 & 4 & -2 \end{bmatrix} \]

Since \(\text{rank}(A) < 3 \), \(\{u, v, w\} \) does not form a basis for \(\mathbb{R}^3 \).
47. As in Example 3.52, \{x, u, v, w\} form a basis for \(\mathbb{R}^4 \iff \text{When } A = \begin{bmatrix} x^T \\ u^T \\ v^T \\ w^T \end{bmatrix}, \text{rank}(A) = 4.\]

\[
A = \begin{bmatrix}
 1 & 1 & 0 \\
 1 & 0 & 1 \\
 1 & 0 & 1 \\
 0 & 1 & 1 \\
\end{bmatrix} R_2 - R_1 \rightarrow \begin{bmatrix}
 1 & 1 & 1 & 0 \\
 0 & 0 & -1 & 1 \\
 0 & -1 & 0 & 1 \\
 0 & 1 & 1 & 1 \\
\end{bmatrix} R_3 + R_2 + R_4 \rightarrow \begin{bmatrix}
 1 & 1 & 1 & 0 \\
 0 & 0 & -1 & 1 \\
 0 & 0 & 0 & 3 \\
 0 & 1 & 1 & 1 \\
\end{bmatrix}
\]

Since \(\text{rank}(A) = 4\), \{x, u, v, w\} form a basis for \(\mathbb{R}^4\).

48. As in Example 3.52, \{x, u, v, w\} form a basis for \(\mathbb{R}^4 \iff \text{When } A = \begin{bmatrix} x^T \\ u^T \\ v^T \\ w^T \end{bmatrix}, \text{rank}(A) = 4.\]

\[
A = \begin{bmatrix}
 x^T \\
 u^T \\
 v^T \\
 w^T \\
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & 0 & -1 \\
 -1 & 1 & 0 & 0 \\
 0 & 0 & -1 & 1 \\
 0 & -1 & 1 & 0 \\
\end{bmatrix} R_2 - R_4 \rightarrow \begin{bmatrix}
 1 & 0 & 0 & -1 \\
 0 & -1 & 1 & 0 \\
 0 & 0 & -1 & 1 \\
 -1 & 1 & 0 & 0 \\
\end{bmatrix} R_4 + R_2 + R_3 \rightarrow \begin{bmatrix}
 1 & 0 & 0 & -1 \\
 0 & -1 & 1 & 0 \\
 0 & 0 & -1 & 1 \\
 0 & 0 & 1 & -1 \\
\end{bmatrix}
\]

Since \(\text{rank}(A) = 4\), \{x, v, w\} form a basis for \(\mathbb{R}^4\).

49. We find the coordinate vector \([w]_B\) by finding \(c_1\) and \(c_1\) such that \(w = c_1 b_1 + c_1 b_2\).
As in Example 2.18 of Section 2.3, we form the matrix \(A = \begin{bmatrix} b_1 & b_2 & w \end{bmatrix}\) and row reduce.

\[
A = \begin{bmatrix} b_1 & b_2 & w \end{bmatrix} = \begin{bmatrix}
 1 & 1 & 1 \\
 2 & 0 & 6 \\
 0 & -1 & 2 \\
\end{bmatrix} \rightarrow \begin{bmatrix}
 1 & 0 & 3 \\
 0 & 1 & -2 \\
 0 & 0 & 0 \\
\end{bmatrix}
\]

Since \(w = 3b_1 - 2b_2\), we have the coordinate vector \([w]_B = \begin{bmatrix} 3 \\
 -2 \end{bmatrix}\).

50. We find the coordinate vector \([w]_B\) by finding \(c_1\) and \(c_1\) such that \(w = c_1 b_1 + c_1 b_2\).
As in Example 2.18 of Section 2.3, we form the matrix \(A = \begin{bmatrix} b_1 & b_2 & w \end{bmatrix}\) and row reduce.

\[
A = \begin{bmatrix} b_1 & b_2 & w \end{bmatrix} = \begin{bmatrix}
 3 & 5 & 1 \\
 1 & 1 & 3 \\
 4 & 6 & 4 \\
\end{bmatrix} \rightarrow \begin{bmatrix}
 1 & 0 & 7 \\
 0 & 1 & -4 \\
 0 & 0 & 0 \\
\end{bmatrix}
\]

Since \(w = 7b_1 - 4b_2\), we have the coordinate vector \([w]_B = \begin{bmatrix} 7 \\
 -4 \end{bmatrix}\).

51. We row reduce over \(\mathbb{Z}_2\) to find \(\text{rank}(A)\), then \(\text{nullity}(A) = n - \text{rank}(A)\).

\[
A = \begin{bmatrix}
 1 & 1 & 0 \\
 0 & 1 & 1 \\
 1 & 0 & 1 \\
\end{bmatrix} R_3 + R_1 \rightarrow \begin{bmatrix}
 1 & 1 & 0 \\
 0 & 1 & 1 \\
 0 & 0 & 1 \\
\end{bmatrix}
\]

Since \(\text{rank}(A) = 2\), we have \(\text{nullity}(A) = 3 - 2 = 1\).