3.2 Matrix Algebra
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1 Following remarks prior to Example 3.16, the key assumption is matrices are the same size.
Then add, subtract and multiply (by scalars only) as in normal algebra.

3.2 - Matrix Algebra

X —24+3B=0= X =24 - 3B = {g g}

2. Following remarks prior to Example 3.16, the key assumption is matrices are the same size.
Then add, subtract, and multiply (by scalars only) as in normal algebra.

20X =A-B=X=1(A-B)= H é]
2.

; ' 7 10
. @X=5A_2B= .
4 ‘ : 13.18
As in Example 3.16, we want to find scalars ¢; and ¢ such that 1Ay +cds = B.
12 01 25
a3 i]velan] =[5 5]

The left-hand side of this equation can be rewritten as [ _2 + 26 22 izz }

3.X=—§-(A+2B)z{ .
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Comparing entries and the definition of matrix equality yields Qil i 222
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Gauss-Jordan elimination easily gives
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So, c; =2 and ¢g = 1. Thus, 24; + 45 = B, which can be easily checked.

Having walked through the process, we note this pattern in our augmented matrix:
the first column is the entries of A, the second column is the entries of A, and
the third column, the augmented column, is the entries of B. Make use of this pattern!
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13. Following Example 3.18, we create an augmented matrix and row reduce to solve.
As in Exercise 8, the first column is the entries of Ay, the second column is the entries of As,
but now the augmented column is all zeroes.

1407 100
2 3|0 010
320l "{oolo
4110 000

- Clearly, the only solution is ¢; = ¢s = 0. What do we conclude?
We conclude that A; and A; are linearly independent.

14. Following Example 3.18, we create an augmented matrix and row reduce to solve.
As in Exercise 8, the first column is the entries of Ay, the second column is the entries of A,
the third column is the entries of Az, but now the augmented column is all Zeroes.

1 210 ‘110 310

1 120 _ J01-1}0

1 -141|0 00 010

1 03]|0 00 010
So, ¢ = —3cs, c2 = c3 is a solution with at least one ¢; # 0. What does that tell us?
That tells us that A;, Ag, and Ag are linearly dependent.
In particular, if we let cg = —1, we have the following dependence relation:

o] -[e] -3 [00]
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23. We will compute AB and BA, then equate entries to find the conditions on a, b, ¢, and d.

111 ab_a+cb+d_aa+b_ab 11
AB_'I:O 1]{001}“{ c d J—[cc—l—djl—[cd][() 1]—3‘4
Equating entries gives us the following four equations (

conditions on a, b, ¢, and d):
a+c=a,b+d=a+b c=c and d

= ¢+ d = The conditions are ¢ = d and ¢ = 0.

L: - 24, We will compute AB and BA, then equate entries to find the conditions on a, b, ¢, and d.

| 1 -17Ta 8] _[ a-c b-d] [a—b —a+b Jab][ 141
B | =1 1]lecd] | -a+c -b+d| " |c=d —c+d|=|ecd -1 1
Equating entries gives us the following four equations (conditions on q, b, ¢, and d):

a—c=a—bb—-d=—a+b, —a+c=c—d,and —b+d=—c+d.
So, the conditions on a, b, ¢, and d are @ = d and b = c.

. We will compute AB and BA, then equate entries to find the conditions on a, b, ¢, and d.
AB=|12|ab] _[ a+2 b+2d _|a+3b 2a+4b] Ja b][12 —BA
13 4])|cd] T |3a+4c 3b+4ad| T | o+ 3d 2c+4d | ted|f3 4|

Equating entries gives us the following four equations (conditions on a, b, ¢, and d):

6+ 2c=a+3b, b+ 2d = 2a + 4b, 3a+4c=c+3d, and 3b+ 4d = 2¢ + 4d.
So, the conditions on a, b, ¢, and d are 3b = 2¢ and ¢ = d — c.

We will compute 4; B and BA4;, then equate entries to find conditions on a, b, ¢, and d.
We will then repeat the process for 4,8 and B A4, then combine conditions for our answer.

10|laobd a b a 0 a b|[10
AlB:[o 0] [c d}: [o o]': [c 0}‘“ [c d} {0 0] = B4
Equating entries gives us the following four equations (conditions on a, b, ¢, and d):
a=a,b=0,¢c=0, and 0 =0 = The 4; conditions are b = 0 and ¢ = 0.
Repeating the process for A48 and BA, yields:-
00 a b 00 0 b a b 00
AdB = [0 1} {c d] - [c d] - [0 d] —[c d] [0 1] = B4,

Equating entries gives us the following four equations (conditions on a, b, ¢, and d):
0=0,6=0,c=0,andd =d = The Ay conditions are b = 0 and ¢ = 0.

Combining the conditions for 4; and A4 (in this case they are the same) gives us:
The required conditions so that B will commute with A; and 44 are b = ¢ = 0,

Q: Let M = aAd; + dA4. Does the B we found above commute with M?
A: Yes, since BM = B(aA;+dAy) = aBA;+dBA, = aA;B+dA4B = (a4, +dA4)B = MB.
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36. (a) Let A be the n X n matrix with entries a;; = 1 if either i = 1 or j = 1,, 0 otherwise,
and let B be the n X n matrix with entries b;; = 1if i+ j = n + 1, O otherwise.
(11~ 117 (00 --- 01 frie- 11
10---00 00---10 00.---01
So, A= |i: tilandB=|ii 1|5 AB=|i 1
16---00 01.---060 00.--.01
| 106---00] 110+ 00] 1 00--- 01}
Clearly, A and B are symmetric, but AB is not symmetric.
: 111 , Tox C[11
| When n = 2, for instance, we have A = [1 0], B = [1 0], and AB = {0 1}.
r (b) Since this is an if and only if statement, we have two claims to prove.
él if: If A, B, and AB are symmetric, then AB = BA. -
g AB is by A and B are
= symmetric Thm 3.4d symmetric
AB = (AB)T = BT4T = BA
only if: If A, B are symmetric and AB = BA, then AB is symmetric, that is (AB)T = AB.
’ by A and B are by the given
Thm 3.4d symmetric AB=BA
(AB)T = BTAT = BA = 4B

@ For each matrix, we will simply check to see if AT = — 4 is satisfied.

a) Since AT = # — 12 =—A, Ais not skéw—symmetric.
‘ -23

(b) Since AT = _(1) } = [2 _(1)] = —A4, A is skew-symmetric.

0 1 :
(c) Since AT = | 3 2 | = —A, A is skew-symmetric.
1 0

0
(d) Since AT = | 1 —A, A is not skew-symmetric.
2

8. A square matrix is called skew-symmetric if AT =

—A& [AT] g = [“A]ij Aad [A]ji = —[4]
Thus, the components must satisfy a;; = — Q5. '

if-

9. If A is skew-symmetric (AT = —A), then the diagonal entries must be zero (as; = 0).
AT=-4 = AT, =1-4; = [4;=-14
5 j

§i ij
SO Aj; = —Qi5 = Qi = —Qyy = 20,7;@ =0 = a; =0

0. If A and B are skew-symmetric, then so is 4 + B, that is (A+B)T =—(4+ B).

by A and B are by
Thm 3.4b skew-symmetric
(A+ B)T T

' Thm 3.2
= AT+B = (—4)+(-B) = —(A+B)
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‘ -a 0 b0}’
Demanding that AB be skew-symmetric gives us the equation:

T
AT 0 a|ll 0D _ 0 a|| 0B

anr =-ane ([ 55] [58]) =156 [ Sal @
—ab 0 1" _Jabo] [~ab 0] _[ab0
0 —ab] | O ab 0 —ab| |0 ab|

So, —ab = ab & ab=0. Letting O = the zero matrix, we get:

AB will be skew-symmetric provided either A = O or B = O {or both).

1. Let A and B be skew—symmetﬂc 2 x 2 matrices, so A = { 0 a} and B = { 0 'b]

42. Tf A is a square matrix, then A = AT is skew-symmetric, that is (A — AT)T = —(A - AT).

by by by
Thm 3.4b | . _ Thm 3.4a Thm 3.2
(A— ATYT = AT — (AT = AT A = —(4-AT)

43. We will prove this claim in (a) and demonstrate it with an example in (b).

(a) If Aisnxn, then A= B+ C, where B is symmetric and C is skew-symmetric.

symmetric by skew-symmetric by
Thm 3.5a T Exercise 42 T
= A+ AT and & = A-A

Now simply note: 4 = 3{A -+ ATy +3(A-AT) = 18+ 38
Q: When § is symmetric and 8’ is skew-syminetric, are ¢S and ¢S’ also?
A: Yes, since (¢S)T = cST =cS and (ST = c(§)T = —cS".

'123] 123 147 123 147
b) A =|456|=35||456|+1258 +1l456| {258
| 789] 789 369 789 369]
(135 0—-1-2
=357 +{1 0-1}.
(579] 2 1 0

44\ Let A and B be n X n matrices, and let k be a scalar. Then

1) tr(A+B) =(au+bu)+ (a2t bag) + -+ + (Gnn + bnn)
= (a11+a22+"'+ann) + (b1 4 bgg 4 - -+ 4 bpn) =tT(A)+t’J".(B).
(i) tr(kA) = kagy + kags + -+ + kamn = k(11 + Qg + -+ + Gnn) = k1 (A).

45. Let A and B be n x n matrices. Then

tr(AB) = f{enbi1 +aigbor +---+ G1nbn1) + (Ga1biz -+ a22ba2 + - - + Gonbna) +
R (anlbln + anabop + -0+ annbnn)

= (by1o11 + bigas + - + Dintin1) + (b2n0i2 + bagdgs + -+ + bonln2) +
' Rl o (bnlaln + bpoton + - F bnnann)
= tr (BA) '

46. Let A be an n X n matrix. Then

tﬂAﬁj:(ﬁy%ﬁy%~+a%)+®%+a%+~-+@d+~~+@%+ﬂ$+~-+ﬁda
that ig, the sum of the squares of the entries of A.




