Content Goals – for Section 5.4
The whole focus of this section is to work toward the Spectral Theorem (Theorem 5.20) which states:  A matrix A is symmetric if and only if it is orthogonally diagonalizable.
Definition – Symmetric – recall that A is symmetric if AT = A (p. 149)

Definition – Orthogonally Diagonalizable – a matrix A is orthogonally diagonalizable if there exists an orthogonal matrix Q and a diagonal matrix D such that QTAQ = D (p. 397)

Showing that an orthogonally diagonalizable matrix is symmetric is relatively easy (Theorem 5.17).  But the rest of the section is trying to establish the spectral theorem going the other direction – that symmetric matrices are all orthogonally diagonalizable.
Since we’re not working at all with complex numbers, the proof to Theorem 5.18 may not make too much sense to you.  It essentially is using the idea of complex conjugates to prove that the eigenvalues of symmetric matrices are all real.

Notice that Theorem 5.19 goes further than what we knew already.  We knew that eigenvectors for different eigenvalues were linearly independent, but this theorem says that in the case of symmetric matrices, they are in fact orthogonal to each other.

The book introduces the terminology of spectrum to refer to the set of eigenvalues.  You’ll hear this in some physical situations, and we use it more often in mathematics when we have an infinite-dimensional system (and thus often an infinite number of “eigenvalues”), but it still works in the small dimension systems we’re working with.
The proof of the spectral theorem is fairly long and uses some notation from section 3.1 that you may wish to review – various representations of matrix multiplication and block matrix representations.  Read over this proof several times, trying to follow each step and writing out details on your own paper if needed.  You don’t have to completely master it.
The spectral theorem leads to another factorization of the matrix A:  A = QDQT which on p. 402 they write in the projection form (and note this uses the outer product notation introduced on p. 145).  D is just the diagonal matrix consisting of the eigenvalues.  Q is an orthogonal matrix that is created from the eigenvectors – we take the basis for each eigenspace and then find an orthogonal basis using the Gram-Schmidt process and then normalize each vector found.  This creates the orthogonal matrix Q needed to orthogonally diagonalize A.

