Content Goals – for Section 5.3
In the previous section, we learned that if we have an orthogonal basis for a subspace W, then we can define the orthogonal projection of a vector onto W – basically by summing the projections of the vector on to each vector in the basis – and that this projection is unique.  But how do we know we can find an orthogonal basis for any subspace W?
This section introduces a process, called the Gram-Schmidt Process, that constructs an orthogonal basis.  Theorem 5.15 lays out the process.  It looks somewhat complicated, but really it is just taking one vector at a time, and taking the component of that vector that is orthogonal to the subspace made up of all the other vectors you’ve already created.

So now, the only trick is that you have to start out with a basis – any basis – of your subspace.  Then you can “orthogonalize” (this really isn’t a word) it.  Usually finding a basis isn’t too hard, if you understand what a basis of a subspace is.

Some important notes:

· The Gram-Schmidt process does not create an orthonormal basis – it creates an orthogonal basis!

· Even if you start with all unit vectors, the output of the Gram-Schmidt process may not be an orthonormal basis, as it keeps changing the vectors (including their lengths) as you go!

· If you do need an orthonormal basis rather than just an orthogonal one, do the Gram-Schmidt process and get your orthogonal basis, and then just normalize all the vectors to unit vectors to get your orthonormal basis.
If A is an m x n matrix which has linearly independent columns, then we can create the factorization:  A = QR

· Q is a matrix with orthonormal columns – where the columns of Q are just the normalized vectors obtained from the Gram-Schmidt Process on the columns of A.  Q will be the same size as A (m x n).
· R is an upper triangular (square n x n) matrix – and can be obtained from QTA.

· This QR factorization has some nice applications.  We won’t explore the example of using it to numerically approximate eigenvalues of a matrix.  Time allowing, we will explore using it to solve the problem of least squares approximation of data (section 7.3).
