Linear Systems

Math 214 Spring 2007 ©2007 Ron Buckmire Fowler 110 MWF 2:30pm - 3:25pm http://faculty.oxy.edu/ron/math/214/07/

Class 28: Monday April 9

TITLE Gram-Schmidt Process and QR factorization **CURRENT READING** Poole 5.3

Summary

There is a very cool algorithm for producing an orthogonal basis from "regular" basis for a given subspace. The process is known as Gram-Schmidt orthogonalization. We also are introduced to *another* matrix factorization, A = QR.

Homework Assignment HW #26 Poole, Section 5.3 : 1,2,3,4,6,11,13, 17. EXTRA CREDIT 18.

1. Gram-Schmidt Orthogonalization

Suppose we start off with three linearly independent vectors \vec{a} , \vec{b} and \vec{c} . First we will construct three orthogonal vectors \vec{A} , \vec{B} and \vec{C} and then normalize these to produce three orthonormal vectors $\vec{q_1}$, $\vec{q_2}$ and $\vec{q_3}$ from our original linearly independent trio.

STEP 1. First choice, start with \vec{a} . **1.** Let $\vec{A} = \vec{a}$.

STEP 2. Second choice, select in the direction of \vec{b} with the projection in the direction of \vec{a} removed. Then this vector should be orthogonal to \vec{a} .

2. Let
$$\vec{B} = \vec{b} - \frac{A^T b}{\vec{A}^T \vec{A}} \vec{A} = \vec{b} - \text{proj}_{\vec{A}}(\vec{b}) = \text{perp}_{\vec{A}}(\vec{b})$$

STEP 3. Third choice, select in the direction of \vec{c} with the projections of \vec{c} in the direction of \vec{a} and in the direction of \vec{b} removed. So this third vector will be orthogonal to both of those!

3. Let
$$\vec{C} = \vec{c} - \frac{\vec{A}^T \vec{c}}{\vec{A}^T \vec{A}} \vec{A} - \frac{\vec{B}^T \vec{c}}{\vec{B}^T \vec{B}} \vec{B} = \vec{c} - \operatorname{proj}_{\vec{A}}(\vec{c}) - \operatorname{proj}_{\vec{B}}(\vec{c})$$

STEP 4. Normalize A, B and C by dividing by their magnitudes to obtain $\vec{q_1} = \frac{\vec{A}}{||\vec{A}||}$, $\vec{q_2} = \frac{\vec{B}}{||\vec{B}||}$ and $\vec{q_3} = \frac{\vec{C}}{||\vec{C}||}$.

The vectors $\vec{q_1}, \vec{q_2}$ and $\vec{q_3}$ are orthonormal!

EXAMPLE

Let's use Gram-Schmidt to convert the linearly independent vectors $\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\-2 \end{bmatrix}, \begin{bmatrix} 3\\-3\\3 \end{bmatrix} \right\}$ to

three orthonormal vectors.

2. A=QR Factorization

Gram-Schmidt Orthogonalization is equivalent to factoring a $m \times n$ matrix A into the product of a matrix Q with orthonormal columns and R is an invertible upper triangular matrix.

$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{bmatrix} \vec{q_1} & \vec{q_2} & \vec{q_3} \end{bmatrix} \begin{bmatrix} \vec{q_1}^T \vec{a} & \vec{q_1}^T \vec{b} & \vec{q_1}^T \vec{c} \\ \vec{q_2}^T \vec{b} & \vec{q_2}^T \vec{c} \\ \vec{q_3}^T \vec{c} \end{bmatrix}$$

Exercise

Strang, page 230, #23. Find $\vec{q_1}$, $\vec{q_2}$, and $\vec{q_3}$ as combinations of the independent columns of $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 3 & 6 \end{bmatrix}$ and write A as QR.