Linear Systems

Math 214 Spring 2007 ©2007 Ron Buckmire Fowler 110 MWF 2:30pm - 3:25pm http://faculty.oxy.edu/ron/math/214/07/

Class 26: Wednesday April 4

TITLE Orthogonality and Projections Revisited **CURRENT READING** Poole 5.1

Summary

We shall return to the investigation of projections and orthogonality, this time with more increased generality.

Homework Assignment

HW #24 Poole, Section 5.1: 3,4,5,6,8,9,12,13,16,17,30,31. EXTRA CREDIT 28, 33.

1. Orthogonal Bases

DEFINITION

An **orthogonal basis** of a subspace \mathcal{W} of \mathbb{R}^n is a basis of \mathcal{W} that is an **orthogonal set** of vectors. An orthogonal set of vectors is a collection of vectors $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots, \vec{v}_k\}$ where *every* pair of distinct vectors is orthogonal to each other, i.e. $\vec{v}_i \cdot \vec{v}_j = 0$ for all $i \neq j$.

Theorem 5.1

If $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \dots, \vec{v}_k\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n then those vectors are linearly independent.

EXAMPLE Show that $\begin{bmatrix} 2\\1\\-1 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\-1\\1 \end{bmatrix}$ form an orthogonal basis for \mathbb{R}^3 .

Theorem 5.2

Let $\{\vec{v}_1, \vec{v}_2, \vec{v}_2, \dots, \vec{v}_k\}$ be an orthogonal basis for a subspace \mathcal{W} of \mathbb{R}^n and let \vec{w} be any vector in \mathcal{W} . THEN the unique scalars $c_1, c_2, c_3, \dots, c_n$ (also known as coordinates) where $\vec{w} = \sum_{i=1}^n c_i \vec{v}_i$ are given by

$$c_i = \frac{\vec{w} \cdot \vec{v}_i}{\vec{v}_i \cdot \vec{v}_i}$$

EXAMPLE

Let's show how this formula for the coordinates is derived. (Doesn't it look familiar??)

Exercise

Given the orthogonal basis $\beta = \left\{ \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix} \right\}$ and the vector $\vec{w} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$ find the coordinates of \vec{w} with respect to β , i.e. $[\vec{w}]_{\beta}$.

DEFINITION

An **orthonormal basis** of a subspace \mathcal{W} of \mathbb{R}^n is a basis of \mathcal{W} that consists of an **orthonormal set** of vectors. An orthonormal set of vectors is a collection of orthogonal unit vectors $\{\vec{q}_1, \vec{q}_2, \vec{q}_3, \ldots, \vec{q}_k\}$ where $\vec{v}_i \cdot \vec{v}_j = \delta_{i,j}$. The symbol $\delta_{i,j}$ is known as the Kronecker delta function and has the property that $\delta_{i,j} = 0$ when $i \neq j$ and $\delta_{i,j} = 1$ when i = j.

Exercise

Form an orthonormal basis for \mathbb{R}^3 from the orthogonal basis β given in the previous **Exercise**.

2. Orthogonal Matrices

DEFINITION

A $n \times n$ matrix Q is said to be an **orthogonal matrix** if the columns (and rows) of the matrix form an orthonormal set.

Theorem 5.4

The columns of an $m \times n$ matrix Q form an orthonormal set if and only if $Q^T Q = I_n$.

Theorem 5.5

A square matrix Q is orthogonal if and only if $Q^{-1} = Q^T$.

Theorem 5.8

Let ${\cal Q}$ be an orthogonal matrix.

- (a) Q^{-1} is orthogonal.
- (b) $det(Q) = \pm 1$.
- (c) If λ is an eigenvalue of Q, then $|\lambda| = 1$.
- (d) If Q_1 and Q_2 are orthogonal $n \times n$ matrices, then so is Q_1Q_2 .

EXAMPLE

Let's form a square orthogonal matrix from the orthonormal basis found in the previous exercise and illustrate some of the results from Theorem 5.4, 5.5 and 5.8.