Linear $\mathbf{S}_{\text {ystems }}$

Fowler 110 MWF 2:30pm - 3:25pm
http://faculty.oxy.edu/ron/math/214/07/

Class 26: Wednesday April 4

TITLE Orthogonality and Projections Revisited
CURRENT READING Poole 5.1

Summary

We shall return to the investigation of projections and orthogonality, this time with more increased generality.

Homework Assignment

HW \#24 Poole, Section 5.1: 3,4,5,6,8,9,12,13,16,17,30,31. EXTRA CREDIT 28, 33.

1. Orthogonal Bases

DEFINITION

An orthogonal basis of a subspace \mathcal{W} of \mathbb{R}^{n} is a basis of \mathcal{W} that is an orthogonal set of vectors. An orthogonal set of vectors is a collection of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \ldots, \vec{v}_{k}\right\}$ where every pair of distinct vectors is orthogonal to each other, i.e. $\vec{v}_{i} \cdot \vec{v}_{j}=0$ for all $i \neq j$.

Theorem 5.1

If $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \ldots, \vec{v}_{k}\right\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^{n} then those vectors are linearly independent.

EXAMPLE

Show that $\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ form an orthogonal basis for \mathbb{R}^{3}.

Theorem 5.2

Let $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ be an orthogonal basis for a subspace \mathcal{W} of \mathbb{R}^{n} and let \vec{w} be any vector in \mathcal{W}. THEN the unique scalars $c_{1}, c_{2}, c_{3}, \ldots, c_{n}$ (also known as coordinates) where $\vec{w}=\sum_{i=1}^{n} c_{i} \vec{v}_{i}$ are given by

$$
c_{i}=\frac{\vec{w} \cdot \vec{v}_{i}}{\vec{v}_{i} \cdot \vec{v}_{i}}
$$

EXAMPLE

Let's show how this formula for the coordinates is derived. (Doesn't it look familiar??)

Exercise

Given the orthogonal basis $\beta=\left\{\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right\}$ and the vector $\vec{w}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ find the coordinates of \vec{w} with respect to β, i.e. $[\vec{w}]_{\beta}$.

DEFINITION

An orthonormal basis of a subspace \mathcal{W} of \mathbb{R}^{n} is a basis of \mathcal{W} that consists of an orthonormal set of vectors. An orthonormal set of vectors is a collection of orthogonal unit vectors $\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}, \ldots, \vec{q}_{k}\right\}$ where $\vec{v}_{i} \cdot \vec{v}_{j}=\delta_{i, j}$. The symbol $\delta_{i, j}$ is known as the Kronecker delta function and has the property that $\delta_{i, j}=0$ when $i \neq j$ and $\delta_{i, j}=1$ when $i=j$.

Exercise

Form an orthonormal basis for \mathbb{R}^{3} from the orthogonal basis β given in the previous Exercise.

2. Orthogonal Matrices

DEFINITION

A $n \times n$ matrix Q is said to be an orthogonal matrix if the columns (and rows) of the matrix form an orthonormal set.

Theorem 5.4

The columns of an $m \times n$ matrix Q form an orthonormal set if and only if $Q^{T} Q=I_{n}$.

Theorem 5.5

A square matrix Q is orthogonal if and only if $Q^{-1}=Q^{T}$.

Theorem 5.8

Let Q be an orthogonal matrix.
(a) Q^{-1} is orthogonal.
(b) $\operatorname{det}(Q)= \pm 1$.
(c) If λ is an eigenvalue of Q, then $|\lambda|=1$.
(d) If Q_{1} and Q_{2} are orthogonal $n \times n$ matrices, then so is $Q_{1} Q_{2}$.

EXAMPLE

Let's form a square orthogonal matrix from the orthonormal basis found in the previous exercise and illustrate some of the results from Theorem 5.4, 5.5 and 5.8.

