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TITLE Diagonalization and Similarity
CURRENT READING Poole 4.4

Summary
One application of computing eigenvalues and eigenvectors leads to an important matrix factorization
and characteristic of a matrix known as “diagonalizability.”

Homework Assignment
HW#22: Poole, Section 4.4: 2,5,6, 9, 10, 16,18,21,22,24,25. EXTRA CREDIT 23.

1. Factoring A =SΛS−1

S is a matrix whose columns consist of the eigenvectors of A.
Λ is a diagonal matrix with the eigenvalues of A along the diagonal.
The factorization is only possible if the n × n (square) matrix A has exactly n linearly independent
eigenvectors. In other words, none of the eigenvectors can be a linear combination of the other eigen-
vectors (other wise S−1 would not exist).
Let’s show that A = SΛS−1 and AS = SΛ and Λ = S−1AS. This last form is the most important,
because it means that we can produce a diagonal matrix Λ from a given square matrix A by pre- and
post- multiplying it by the special matrix S. This process is called diagonal decomposition.

Proof
If ~x1, ~x2, ~x3, . . . , ~xn are n linearly independent eigenvectors of A which make up the columns of a special
matrix S then

AS = A
[

~x1 ~x2 ~x3 . . . ~xn

]
=

[
A ~x1 A ~x2 A ~x3 . . . A ~xn

]

=
[

λ1 ~x1 λ2 ~x2 λ3 ~x3 . . . λn ~xn

]
=

[
~x1 ~x2 ~x3 . . . ~xn

]




λ1 0 0 0 0
0 λ2 0 0 0
0 0 λ3 0 0

0 0 0
. . . 0

0 0 0 0 λn




= SΛ

The diagonalization matrix factorization A = SΛS−1 is a special case of similar matrices.

DEFINITION
A is said to be similar to B if there exists an invertible n×n matrix P so that B = P−1AP (and thus
PB = AP or AP = PB). If A is similar to B we say that A ∼ B.

The process of diagonalization is finding a diagonal matrix which is similar to the given n×n matrix A.

EXAMPLE Show that the matrix A =
[

1 2
2 4

]
with eigenvectors

[
1
2

]
and

[
−2
1

]
is similar to

[
5 0
0 0

]
.
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2. Similar Matrices

Theorem 4.21
Let A, B and C be n×n matrices.
(i) A ∼ A (Reflexivity)
(ii) If A ∼ B, then B ∼ A (Symmetry)
(iii) If A ∼ B and B ∼ C, then A ∼ C (Transitivity)
You’ll see more about these words (reflexive, symmetric and transitive) in Math 210! If a relation ∼
satisfies these properties it is known as an equivalence relation.

Exercise Can you prove each of the results in Theorem 4.21? You should be able to!

Theorem 4.22
Let A and B be two similar n×n matrices. THEN
(a) det(A) = det(B)
(b) A is invertible if and only if B is invertible.
(c) A and B have the same rank.
(d) A and B have the same characteristic polynomial.
(e) A and B have the same eigenvalues.

EXAMPLE Consider A =
[

1 0
0 1

]
and B =

[
1 1
0 1

]
. Let’s show that Aand B have the same char-

acteristic polynomial, the same eigenvalues, are both invertible, have rank 2 and the same determinant.

Q: Are these two matrices A and B similar to each other?
A: No! Does this mean that Theorem 4.22 is a vicious lie? Explain the apparent contradiction.

3. Matrix Exponentiation One useful result of diagonal decomposition is that it allows us to
compute values of An very easily. It is very easy to exponentiate a diagonal matrix.

A10 = (SΛS−1)10 = (SΛS−1)(SΛS−1)(SΛS−1) · · · (SΛS−1)

Can we simplify this expression? YES!

A10 = SΛ10S−1

EXAMPLE

Compute
[

1 2
2 4

]10
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4. More on Diagonalization

Theorem 4.25
If an n×n matrix A has n distinct eigenvalues, then A is diagonalizable.

Theorem 4.26
The geometric multiplicity (the dimension of the eigenspace) of each eigenvalue is always less than of
equal to the algebraic multiplicity (the multiplicity of the eigenvalue as a root of the characteristic
polynomial).

Theorem 4.27
Let A be an n×n matrix with k distinct eigenvalues. The following statements are equivalent:
(a) A is diagonalizable.
(b) The union β of the bases of the eigenspaces of A contains n vectors.
(c) The algebraic multiplicity of each eigenvalue equals its geometric multiplicity.

GroupWork

Consider A =




0 1 0
0 0 1
2 −5 4


 and B =




−1 0 1
3 0 −3
1 0 −1


. Are either of these matrices diagonalizable?

Explain your answer!

One application of matrix diagonalization is the computation of the matrix exponential, eA. Similar to
the definition of An = SΛnS−1, if A is diagonalizable, then it has n linearly independent eigenvectors
to make up the columns of S and thus

eA = S




eλ1 0 0 0 0
0 eλ2 0 0 0
0 0 eλ3 0 0

0 0 0
. . . 0

0 0 0 0 eλn




S−1

EXAMPLE

Let’s compute eA, where A =
[

1 2
2 4

]
.

3



5. Symmetric matrices are always diagonalizable

Consider the matrix A =




−1 0 0
0 1 1
0 0 d


. Show that it has eigenvectors




1
0
0


,




0
1
0


 and




0
1

d − 1




with eigenvalues −1, 1, d respectively.

When d → 1 the third eigenvector (and eigenvalue) collapses to be the same as the second, so that the
S matrix for A will be singular and thus A will not be diagonalizable.

However, now consider the symmetric matrix B =




0 1 0
1 0 0
0 0 d


. Show that it has eigenvectors




1
−1
0


,




1
1
0


 and




0
0
1


 with eigenvalues −1, 1, d respectively.

As d → 1 the second eigenvalue repeats, but the eigenvectors are unaffected. Note again: The eigen-
vectors are perpendicular (i.e. orthogonal) to each other so the matrix B can be diagonalized. The S
matrix of eigenvectors will be non-singular and thus S−1 will exist. Do it!
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